首页> 外文OA文献 >On the implicit restart of the rational Krylov method: chasing algorithms for polynomial, extended and rational Krylov
【2h】

On the implicit restart of the rational Krylov method: chasing algorithms for polynomial, extended and rational Krylov

机译:关于有理Krylov方法的隐式重启:追随多项式,扩展和有理Krylov的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Krylov subspace methods are frequently used throughout scientific computing. In this talk we focus on the rational Krylov method which is used, among others, for the (non)linear eigenvalue problem, rational approximation, and contour integration. Implicit restarting is often necessary and relies on applying QR steps on the recurrence matrices. Classically this is done by the explicit QR algorithm, not exploiting any structure of the recurrence matrices involved.Though theoretically fine, these explicit steps are costly and can exhibit numerical difficulties. We will present a new approach using an implicit, structure preserving QR algorithm to overcome the classical drawbacks. To achieve this we apply an initial unitary transformation on the rational Krylov pencil that acts directly on a QR factored form of the recurrence matrices. This transformation allows for the application of a generalized implicit QZ step on therational Krylov pencil that naturally preserves the structure in the recurrence matrices. This proves to be an efficient framework for the formulation of the implicit restart of the rational Krylov method or, equivalently, for the application of a rational filter. It has multiple advantages over traditional approaches: complex conjugate Ritz pairs can be removed from real pencils in real arithmetic, the structure is preserved throughout the algorithm such that the subspace can be easily expanded after the contraction phase, anddeflation of Ritz values can be carefully monitored.We illustrate the viability of the new algorithm with some numerical examples
机译:整个科学计算中经常使用Krylov子空间方法。在本次演讲中,我们重点讨论有理Krylov方法,该方法尤其用于(非线性)线性特征值问题,有理逼近和轮廓积分。隐式重启通常是必需的,并且依赖于对重复矩阵应用QR步骤。传统上,这是通过显式QR算法完成的,而不是利用所涉及的递归矩阵的任何结构。尽管从理论上讲很好,但是这些显式步骤成本高昂,并且可能会出现数值困难。我们将提出一种使用隐式结构保留QR算法的新方法,以克服经典的缺点。为了实现这一点,我们对有理Krylov铅笔应用了一个初始unit变换,该变换直接作用于递归矩阵的QR分解形式。这种转换允许在有理Krylov铅笔上应用广义隐式QZ步骤,该步骤自然将结构保留在递归矩阵中。对于证明有理Krylov方法的隐式重新启动或等效地对有理过滤器的应用,这证明是一个有效的框架。与传统方法相比,它具有多个优点:可以用实数运算从实数铅笔中删除复杂的共轭Ritz对,在整个算法中保留结构,以便在收缩阶段之后可以轻松扩展子空间,并且可以仔细监视Ritz值的缩小我们通过一些数值示例来说明新算法的可行性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号