首页> 外文OA文献 >Real-Time Moving Horizon Estimation for Advanced Motion Control, Application to Friction State and Parameter Estimation.
【2h】

Real-Time Moving Horizon Estimation for Advanced Motion Control, Application to Friction State and Parameter Estimation.

机译:用于高级运动控制的实时运动视野估计,应用于摩擦状态和参数估计。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Friction is a nonlinear phenomenon that is present in almost all motion systems. Friction often limits systems performance by causing tracking and positioning errors and limit cycles. When these errors are unacceptable, the effect of friction needs to be compensated by the system controller, which estimates the friction force and feed this estimate back to the drives. Both model-free and model-based friction force estimation approaches exist. This thesis focuses on the modeling of friction and model-based friction estimation. Accurate model-based friction estimation is obtained provided that the friction model structure includes all major physical characteristics, and accurate real-time estimation of the model states and parameters is performed. This thesis presents a novel advanced friction model and a moving horizon estimator that allows to estimate model parameters and states in real-time. Moving horizon estimation (MHE) is an optimal control approach aiming to find the states and parameters of the system that are most consistent with current and past input-output data and the available system model. Moreover, real-time MHE is a gradient-based estimation technique that greatly benefits from a model that is differentiable with regards to state and parameter. Accurate friction models, which include all essential friction characteristics, as the generalized Maxwell-slip (GMS) model, are hybrid models with switching state conditions between presliding and sliding motion. To overcome these switching conditions, a smoothed version of the GMS model, called S-GMS, which consists of a set of differential equations well suited for gradient-based estimation is developed. Similar to the GMS model, the S-GMS model is a multi-state model that also describes all essential friction characteristics. A MHE friction observer is implemented for both the S-GMS model and the standard single-state LuGre model. Experimental state and parameter estimation shows the benefit of the multi-state S-GMS in presliding regime, where complex hysteresis behavior occurs.Moreover, a real-time embedded MHE friction observer is implemented for the S-GMS model via the automatic code generation tool ACADO and validated on a high-precision direct-drive linear motor. A sampling time in the millisecond range is achieved.
机译:摩擦是一种非线性现象,几乎在所有运动系统中都存在。摩擦通常会引起跟踪和定位错误并限制循环,从而限制系统性能。当这些误差不可接受时,需要由系统控制器补偿摩擦的影响,该系统控制器估计摩擦力并将此估计值反馈给驱动器。无模型和基于模型的摩擦力估计方法都存在。本文主要研究摩擦建模和基于模型的摩擦估计。如果摩擦模型结构包含所有主要物理特征,并且可以对模型状态和参数进行准确的实时估算,则可以获得基于模型的精确摩擦估计。本文提出了一种新颖的高级摩擦模型和可移动地平线估计器,该模型可实时估计模型参数和状态。动视线估计(MHE)是一种最佳控制方法,旨在查找与当前和过去的输入输出数据以及可用的系统模型最一致的系统状态和参数。此外,实时MHE是一种基于梯度的估计技术,该技术极大地受益于状态和参数方面可区分的模型。精确的摩擦模型(包括所有基本摩擦特征)是广义的麦克斯韦滑移(GMS)模型,是在预滑动和滑动运动之间具有切换状态条件的混合模型。为了克服这些切换条件,开发了称为S-GMS的GMS模型的平滑版本,该模型由一组非常适合基于梯度的估计的微分方程组成。与GMS模型相似,S-GMS模型是一个多状态模型,还描述了所有基本摩擦特性。针对S-GMS模型和标准单状态LuGre模型均实现了MHE摩擦观察器。实验状态和参数估计显示了多状态S-GMS在预滑动状态下的好处,即发生复杂的磁滞行为,此外,通过自动代码生成工具为S-GMS模型实现了实时嵌入式MHE摩擦观测器ACADO并在高精度直驱直线电机上得到了验证。采样时间在毫秒范围内。

著录项

  • 作者

    Boegli Max;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号