首页> 外文OA文献 >A practical comparative study of data mining query languages
【2h】

A practical comparative study of data mining query languages

机译:数据挖掘查询语言的实用比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important motivation for the development of inductive databases and query languages for data mining is that such an approach will increase the flexibility with which data mining can be performed. By integrating data mining more closely into a database querying framework, separate steps such as data preprocessing, data mining, and postprocessing of the results, can all be handled using one query language. In this chapter, we compare 6 existing data mining query languages, all extensions of the standard relational query language SQL, from this point of view: how flexible are they with respect to the tasks they can be used for, and how easily can those tasks be performed? We verify whether and how these languages can be used to perform four prototypical data mining tasks in the domain of itemset and association rule mining, and summarize their stronger and weaker points. Besides offering a comparative evaluation of different data mining query languages, this chapter also provides a motivation for the next chapter, where a deeper integration of data mining into databases is proposed, one that does not rely on the development of a new query language, but where the structure of the database itself is extended.
机译:开发归纳数据库和查询语言进行数据挖掘的一个重要动机是,这种方法将增加执行数据挖掘的灵活性。通过将数据挖掘更紧密地集成到数据库查询框架中,可以使用一种查询语言来处理诸如数据预处理,数据挖掘和结果的后处理之类的单独步骤。在这一章中,我们从以下角度比较了6种现有的数据挖掘查询语言,标准关系查询语言SQL的所有扩展:相对于它们可以使用的任务,它们有多灵活,这些任务有多容易被执行?我们验证是否以及如何使用这些语言在项目集和关联规则挖掘领域中执行四个原型数据挖掘任务,并总结它们的强项和弱项。除了提供对不同数据挖掘查询语言的比较评估之外,本章还为下一章提供了动力,在下一章中,提出了将数据挖掘与数据库进行更深层次的集成的方法,该方法不依赖于新查询语言的开发,而是扩展数据库本身的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号