首页> 外文OA文献 >A method to compute recurrence relation coefficients for bivariate orthogonal polynomials by unitary matrix transformations
【2h】

A method to compute recurrence relation coefficients for bivariate orthogonal polynomials by unitary matrix transformations

机译:用unit矩阵变换计算双变量正交多项式递归关系系数的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an algorithm computing recurrence relation coefficients for bivariate polynomials, orthonormal with respect to a discrete inner product. These polynomials make it possible to give the solution of a discrete least squares approximation problem. To compute these polynomials, we pose the inverse eigenvalue problem and solve it efficiently and in a stable way, using a sequence of Givens rotations. We also show how to generalize the algorithm for the case of polynomials in more variables. Several numerical experiments show the validity of the approach.
机译:我们提出了一种算法,用于计算双变量多项式的递归关系系数,相对于离散的内积是正交的。这些多项式可以给出离散最小二乘近似问题的解。为了计算这些多项式,我们提出了逆特征值问题,并使用一系列Givens旋转有效且稳定地解决了它。我们还展示了如何在更多变量中针对多项式的情况对算法进行泛化。几个数值实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号