首页> 外文OA文献 >Objectively evaluating interestingness measures for frequent itemset mining
【2h】

Objectively evaluating interestingness measures for frequent itemset mining

机译:客观评估频繁项集挖掘的兴趣度度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Itemset mining approaches, while having been studied for more than 15 years, have been evaluated only on a handful of data sets. In particular, they have never been evaluated on data sets for which the ground truth was known. As a result of this, it is currently unknown whether itemset mining techniques actually recover underlying patterns. Since the weakness of the algorithmically attractive support/confidence framework became apparent early on, a number of interestingness mea- sures have been proposed. Their utility, however has not been evaluated, except for attempts to establish congruence with expert opinions. Using an extension of the Quest generator proposed in the original itemset min- ing paper, we propose to evaluate these measure objectively for the first time, showing how many non-relevant patterns slip through the cracks.
机译:项目集挖掘方法已经研究了15年以上,但仅在少数数据集上进行了评估。特别是,它们从未在已知基础事实的数据集上进行过评估。结果,目前尚不清楚项目集挖掘技术是否实际上恢复了底层模式。由于算法吸引人的支持/信心框架的弱点在早期就很明显,因此提出了许多有趣的措施。但是,除了试图与专家意见建立一致之外,还没有评估它们的效用。我们建议使用原始项目集采矿中提出的Quest生成器的扩展,首次客观地评估这些度量,以显示有多少无关的模式穿过裂缝。

著录项

  • 作者

    Zimmermann Albrecht;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号