首页> 外文OA文献 >Time-Series Panel Analysis (TSPA): Multivariate Modeling of Temporal Associations in Psychotherapy Process.
【2h】

Time-Series Panel Analysis (TSPA): Multivariate Modeling of Temporal Associations in Psychotherapy Process.

机译:时间序列面板分析(TSPA):心理治疗过程中时间关联的多元建模。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
机译:目的:心理治疗过程中发生的过程的特征是,它们随时间展开,并且参与变化过程的多个因素在个体之间有很大差异(个性现象)。但是,先前的研究由于传统上对静态现象的关注而忽略了时间观点,而静态现象主要是在群体水平上评估的(静力学现象)。为了支持时间方法,作者引入了时间序列面板分析(TSPA),这是一种统计方法,明确地专注于量化心理治疗变化的时间,会话之间的方面。 TSPA模型最初是在个人级别上构建的,随后在组级别上进行汇总,因此可以探索原型模型。方法:TSPA基于向量自回归(VAR),向量自回归是单变量自回归模型到多元时间序列数据的扩展。 TSPA的应用在87名门诊心理治疗患者的样本中得到了证明,这些患者接受了会后问卷调查。变化的原型机制来自心理治疗过程的各个多元模型的集合。在第二步中,探讨了变化机制(TSPA)与症状发生前至症状发生后变化之间的关联。结果:TSPA可以识别典型的过程模式,其中患者的联盟和自我效能通过时间反馈回路联系在一起。此外,治疗师在精通和澄清干预措施中随时间推移的稳定性与更好的治疗效果呈正相关。结论:TSPA是一种统计工具,为时间变化的机制提供了新的思路。通过这种方法,临床医生可以深入了解心理治疗变化的典型模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号