首页> 外文OA文献 >Development of ST:REAM: A reach-based stream power balance approach for predicting alluvial river channel adjustment
【2h】

Development of ST:REAM: A reach-based stream power balance approach for predicting alluvial river channel adjustment

机译:ST:REAM的开发:基于河段的水流功率平衡方法,用于预测冲积河道的调整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

River channel sediment dynamics are important in integrated catchment management because changes in channel morphology resulting from sediment transfer have important implications for many river functions. However, application of existing approaches that account for catchment-scale sediment dynamics has been limited, largely due to the difficulty in obtaining data necessary to support them. It is within this context that this study develops a new, reach-based, stream power balance approach for predicting river channel adjustment.udThe new approach, named ST:REAM (sediment transport: reach equilibrium assessment method), is based upon calculations of unit bed area stream power (ω) derived from remotely sensed slope, width and discharge datasets. ST:REAM applies a zonation algorithm to values of ω that are spaced every 50m along the catchment network in order to divide the branches of the network up into relatively homogenous reaches. ST:REAM then compares each reach’s ω value with the ω of its upstream neighbour in order to predict whether or not the reach is likely to be either erosion dominated or deposition dominated.udThe paper describes the application of ST:REAM to the River Taff in South Wales, UK. This test study demonstrated that ST:REAM can be rapidly applied using remotely sensed data that are available across many river catchments and that ST:REAM correctly predicted the status of 87.5% of sites within the Taff catchment that field observations had defined as being either erosion or deposition dominated. However, there are currently a number of factors that limit the usefulness of ST:REAM, including inconsistent performance and the need for additional, resource intensive, data to be collected to both calibrate the model and aid interpretation of its results
机译:河道沉积物动力学在集水区综合管理中很重要,因为由沉积物转移引起的河道形态变化对许多河流功能都有重要影响。但是,考虑到流域规模沉积物动力学的现有方法的应用受到了限制,这在很大程度上是由于难以获得支持它们的必要数据。正是在这种背景下,本研究开发了一种新的基于河段的水流功率平衡方法来预测河道的调整。 ud这种新方法名为ST:REAM(泥沙输送:达到河床平衡评估方法),其计算基于从遥感的坡度,宽度和流量数据集中得出的单位床面流功率(ω)。 ST:REAM对沿集水区网络每50m间隔的ω值应用分区算法,以便将网络的分支划分为相对均匀的范围。然后,ST:REAM将每个河段的ω值与其上游邻域的ω值进行比较,以预测该河段是侵蚀控制还是沉积控制。 ud本文介绍了ST:REAM在塔夫河上的应用在英国南威尔士州。这项测试研究表明,ST:REAM可以使用可从许多河流流域获得的遥感数据快速应用,并且ST:REAM正确预测了塔夫河流域内87.5%的站点状态,现场观察已将其定义为侵蚀或沉积为主。但是,当前有许多因素限制了ST:REAM的实用性,包括性能不一致以及需要收集额外的资源密集型数据来校准模型和帮助解释其结果的需求

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号