首页> 外文OA文献 >A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography
【2h】

A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography

机译:不规则地形上非线性浅水方程组的非静水压力分布求解器

摘要

We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow wa- ter equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dy- namic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the verti- cal momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain us- ing unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes en- countered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.
机译:我们针对非静水压力分布的非线性浅水方程扩展了最近提出的二维深度积分有限体积求解器。提出的模型旨在模拟非线性和分散浅水过程。我们将总压力分为静水力和动静力两部分,并在分数步法框架内依次解决静水力问题和非静水力问题。通过将非静水压力分量纳入控制方程式可实现分散特性。控制方程是沿x,y和z方向的深度积分连续性方程和深度积分动量方程。与先前的非静水浅水求解器不同,在z动量方程式中,我们既保留了垂直局部对流项,又保留了对流加速度项。在前一个求解器中,我们仅保留局部垂直加速度项。在本文中,我们研究了这些对流项的影响以及在控制方程中,尤其是在强非线性过程中不忽略这些对流项的情况下,可能对计算解的改进。垂直动量方程中对流项的存在导致了数值求解过程,在静液压和动力学步骤中,它与以前的求解器完全不同。我们使用满足广义Delaunay属性的非结构化三角形网格离散化空间域。数值求解器具有震撼性,可以轻松解决润湿/干燥问题,而无需在湿/干界面处求解任何其他方程式。在不规则地形的实际应用中,我们提出了一些具有挑战性的注水过程的数值应用,包括在巴勒莫大学水力学实验室进行的一组新实验。

著录项

  • 作者

    Aricò C.; Lo Re C.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号