首页> 外文OA文献 >Cutting force-based adaptive neuro-fuzzy approach for accurate surface roughness prediction in end milling operation for intelligent machining
【2h】

Cutting force-based adaptive neuro-fuzzy approach for accurate surface roughness prediction in end milling operation for intelligent machining

机译:基于切削力的自适应神经模糊方法,可在智能加工的立铣刀中准确预测表面粗糙度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

End milling is one of the most common metal removal operations encountered in industrial processes. Product quality is a critical issue as it plays a vital role in how products perform and is also a factor with great influence on manufacturing cost. Surface roughness usually serves as an indicator of product quality. During cutting, surface roughness measurement is impossible as the cutting tool is engaged with the workpiece, chip and cutting fluid. However, cutting force measurement is easier and could be used as an indirect parameter to predict surface roughness. In this research work, a correlation analysis was initially performed to determine the degree of association between cutting parameters (speed, feed rate, and depth of cut) and cutting force and surface roughness using adaptive neuro-fuzzy inference system (ANFIS) modeling. Furthermore, the cutting force values were employed to develop an ANFIS model for accurate surface roughness prediction in CNC end milling. This model provided good prediction accuracy (96.65 average accuracy) of surface roughness, indicating that the ANFIS model can accurately predict surface roughness during cutting using the cutting force signal in the intelligent machining process to achieve the required product quality and productivity.
机译:端铣削是工业过程中遇到的最常见的金属去除操作之一。产品质量是至关重要的问题,因为它在产品性能中起着至关重要的作用,并且也是对制造成本产生重大影响的因素。表面粗糙度通常是产品质量的指标。在切削过程中,由于切削工具与工件,切屑和切削液接合,因此无法测量表面粗糙度。但是,切削力的测量比较容易,可以用作预测表面粗糙度的间接参数。在这项研究工作中,首先进行了相关性分析,以使用自适应神经模糊推理系统(ANFIS)建模来确定切削参数(速度,进给速度和切削深度)与切削力和表面粗糙度之间的关联程度。此外,采用切削力值来开发ANFIS模型,以便在CNC立铣刀中准确预测表面粗糙度。该模型提供了良好的表面粗糙度预测精度(平均精度为96.65),表明ANFIS模型可以在智能加工过程中使用切削力信号准确预测切削过程中的表面粗糙度,以达到所需的产品质量和生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号