首页> 外文OA文献 >Electromagnetic flux modeling of ac field over planar microarray dot electrodes used in dielectrophoretic lab-on-chip device
【2h】

Electromagnetic flux modeling of ac field over planar microarray dot electrodes used in dielectrophoretic lab-on-chip device

机译:介电电泳芯片实验室设备中使用的平面微阵列点电极上交流电场的电磁通量建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Introduction: Lab-on-chip devices have been proven to be advantageous in terms of selective collection, manipulationudand separation of cells and particles. Numerous physicaludmethods have been employed in the development of such devices, and alternating current (AC) electrokinetics was one of the chosen techniques due to its selectivity, efficacy, noninvasiveness, and low fabrication costs. Recently it has been shown that, by employing a specific AC electrokinetics technique called dielectrophoresis, it was possible to fabricate an addressable microarray dots in creating axisymmetrical AC fields over a planar microelectrode within a chamber containing the celludsample. Each of these dots received different input frequency values in order to create the required field with specific gradient strength, thus enabling dielectrophoretic experiments to take place in rapid succession. The objective of this study is to simulate the generation of the said electromagnetic fluxes over the microarray dots using finite element methods. Materials and Methods: Three different materials, namely copper, gold, and indium tin oxide were used, and simulated at different input frequencies and environment. Results and Discussion: The results indicate that the generated AC electric fields are satisfactoryudin creating the required DEP effects within a chamber heightudof 200 μm. Different electrode materials and environmentudproduced no significant difference (p>0.05) in terms of the maximum and minimum electrical gradient strengths. Further investigation with regards to the optimal distance in between the dots is warranted in order to create consistent dielectrophoretic effects with optimal particle density.
机译:简介:芯片实验室设备已被证明在细胞和颗粒的选择性收集,处理/分离方面具有优势。在这种设备的开发中已经采用了许多物理方法,由于其选择性,功效,无创性和低制造成本,交流电(AC)电动学是选择的技术之一。最近,已经显示出,通过采用称为介电电泳的特定交流电动力学技术,可以在包含细胞 udsample的室内的平面微电极上产生轴对称交流场时制造可寻址的微阵列点。这些点中的每个点都接收不同的输入频率值,以创建具有特定梯度强度的所需场,从而使介电电泳实验得以快速连续进行。这项研究的目的是使用有限元方法模拟在微阵列点上产生所述电磁通量。材料和方法:使用了三种不同的材料,分别是铜,金和铟锡氧化物,并在不同的输入频率和环境下进行了模拟。结果与讨论:结果表明,所产生的交流电场是令人满意的 udin,可在200μm的腔室高度内创建所需的DEP效应。在最大和最小电梯度强度方面,不同的电极材料和环境没有明显差异(p> 0.05)。为了产生具有最佳粒子密度的一致的介电泳效应,有必要对点之间的最佳距离进行进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号