首页> 外文OA文献 >Parameter-free extraction of the functional network topology from intracranial EEG recordings: a time-resolved study of graph properties in focal onset seizures
【2h】

Parameter-free extraction of the functional network topology from intracranial EEG recordings: a time-resolved study of graph properties in focal onset seizures

机译:从颅内脑电图记录中无参数提取功能网络拓扑结构:病灶发作中图谱特性的时间分辨研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.
机译:理由:局灶性癫痫发作是由于分布的大脑区域之间异常相互作用所致。通过估计多位脑内脑电图记录(iEEG)的互相关矩阵,可以量化这些相互作用。为了评估基础功能网络的拓扑,必须使用阈值从互相关矩阵中导出二进制连接矩阵。传统上,使用唯一的阈值来约束拓扑[1]。我们的方法旨在通过将真实互相关与随机互相关分开,以数据驱动的方式设置阈值。我们将我们的方法与固定阈值方法进行比较,并研究功能拓扑的动力学。方法:我们调查了局部发作性癫痫患者的iEEG,并对其手术可能性进行了评估。使用滑动时间窗口评估等时互相关矩阵。然后,我们比较评估相应二进制网络的3种方法。对于每个时间窗口:*我们的无参数方法源自互相关强度矩阵(CCS)[2]。它的目的是将真正的信号与随机的相关信号分开(由于信号的有限长度和变化的频率内容)。实际上,以数据驱动的方式为每对通道独立评估一个阈值。 *固定平均度(FMD)在整个连接矩阵上使用唯一的阈值,以确保用户定义的平均度。 *变化的平均程度(VMD)使用CCS网络的平均程度为整个连接矩阵设置唯一的阈值。 *最后,根据FMD,CCS,VMD及其对应的随机性计算连接性(c),连接性(以k为单位,断开的子网数),平均整体效率和局部效率(例如,El,El,resp。)。和晶格网络。结果:与FMD和VMD相比,CCS网络呈现出:*拓扑在c,k,Eg和El方面不同。 *从发作前到发作后再发作后,拓扑特征的时程在一个时期内更加稳定,并且在一个时期与下一个时期之间形成更大的对比。对于CCS,发作前的连通性较低,在发作期间增加至较高水平,然后在偏移处减小。 k显示“ U形曲线”,强调了癫痫发作期间所有电极的同步。例如,E1和El时间过程以可再现的方式在相应的随机和晶格网络值之间波动。结论:数据驱动阈值的定义为癫痫功能网络的拓扑结构提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号