首页> 外文OA文献 >Developing Methods For Designing Shape Memory Alloy Actuated Morphing Aerostructures
【2h】

Developing Methods For Designing Shape Memory Alloy Actuated Morphing Aerostructures

机译:设计形状记忆合金致动变形飞机结构的开发方法

摘要

The past twenty years have seen the successful characterization and computational modeling efforts by the smart materials community to better understand the Shape Memory Alloy (SMA). Commercially available numerical analysis tools, coupled with powerful constitutive models, have been shown to be highly accurate for predicting the response of these materials when subjected to predetermined loading conditions. This thesis acknowledges the development of such an established analysis framework and proposes an expanded design framework that is capable of accounting for the complex coupling behavior between SMA components and the surrounding assembly or system. In order to capture these effects, additional analysis tools are implemented in addition to the standard use of the non-linear finite element analysis (FEA) solver and a full, robust SMA constitutive model coded as a custom user-defined material subroutine (UMAT). These additional tools include a computational fluid dynamics (CFD) solver, a cosimulation module that allows separate FEA and CFD solvers to iteratively analyze fluid-structure interaction (FSI) and conjugate heat transfer (CHT) problems, and the addition of the latent heat term to the heat equations in the UMAT to fully account for transient thermomechanical coupling. Procedures for optimizing SMA component and assembly designs through iterative analysis are also introduced at the highest level. These techniques are implemented using commercially available simulation process management and scripting tools. The expanded framework is demonstrated on example engineering problems that are motivated by real morphing structure applications, namely the Boeing Variable Geometry Chevron (VGC) and the NASA Shape Memory Alloy Hybrid Composite (SMAHC) chevron. Three different studies are conducted on these applications, focusing on component-, assembly-, and system-level analysis, each of which may necessitate accounting for certain coupling interactions between thermal, mechanical, and fluid fields. Output analysis data from each of the three models are validated against experimental data, where available. It is shown that the expanded design framework can account for the additional coupling effects at each analysis level, while providing an efficient and accurate alternative to the cost- and time-expensive legacy design-build-test methods that are still used today to engineer SMA actuated morphing aerostructures.
机译:在过去的20年中,智能材料界成功地进行了表征和计算建模工作,以更好地理解形状记忆合金(SMA)。已经证明,市售的数值分析工具与强大的本构模型相结合,可在预测预定载荷条件下预测这些材料的响应时非常准确。本文承认了这种已建立的分析框架的发展,并提出了一种扩展的设计框架,该框架能够解决SMA组件与周围组件或系统之间的复杂耦合行为。为了捕获这些影响,除了标准使用非线性有限元分析(FEA)求解器和编码为自定义用户定义的材料子例程(UMAT)的完整的,坚固的SMA本构模型之外,还实施了其他分析工具。 。这些附加工具包括计算流体动力学(CFD)求解器,允许单独的FEA和CFD求解器迭代分析流体结构相互作用(FSI)和共轭传热(CHT)问题的协同仿真模块,以及潜热项的添加。结合UMAT中的热方程,以充分考虑瞬态热机械耦合。还通过最高级别介绍了通过迭代分析优化SMA零件和组件设计的过程。这些技术是使用商业上可用的仿真过程管理和脚本工具实现的。扩展框架针对实际变形结构应用引发的示例工程问题进行了演示,这些应用是波音​​可变几何人字形(VGC)和NASA形状记忆合金混合复合材料(SMAHC)人字形。在这些应用程序上进行了三项不同的研究,着重于组件,组装和系统级分析,每种分析都可能需要考虑热场,机械场和流体场之间的某些耦合作用。可以根据实验数据验证来自三个模型中每个模型的输出分析数据。结果表明,扩展的设计框架可以解决每个分析级别的附加耦合效应,同时为当今仍用于工程设计SMA的昂贵且费时的传统设计-构建-测试方法提供了一种有效而准确的替代方法驱动变形航空结构。

著录项

  • 作者

    Oehler Stephen Daniel;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号