首页> 外文OA文献 >Computational Evaluation of a Transonic Laminar-Flow Wing Glove Design
【2h】

Computational Evaluation of a Transonic Laminar-Flow Wing Glove Design

机译:跨音速层流翼手套设计的计算评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aerodynamic benefits of laminar flow have long made it a sought-after attribute in aircraft design. By laminarizing portions of an aircraft, such as the wing or empennage, significant reductions in drag could be achieved, reducing fuel burn rate and increasing range. In addition to environmental benefits, the economic implications of improved fuel efficiency could be substantial due to the upward trend of fuel prices. This is especially true for the commercial aviation industry, where fuel usage is high and fuel expense as a percent of total operating cost is high.Transition from laminar to turbulent flow can be caused by several different transition mechanisms, but the crossflow instability present in swept-wing boundary layers remains the primary obstacle to overcome. One promising technique that could be used to control the crossflow instability is the use of spanwise-periodic discrete roughness elements (DREs). The Flight Research Laboratory (FRL) at Texas A&M University has already shown that an array of DREs can successfully delay transition beyond its natural location in flight at chord Reynolds numbers of 8.0x10^6. The next step is to apply DRE technology at Reynolds numbers between 20x10^6 and 30x10^6, characteristic of transport aircraft. NASA's Environmentally Responsible Aviation Project has sponsored a transonic laminar-flow wing glove experiment further exploring the capabilities of DRE technology. The experiment will be carried out jointly by FRL, the NASA Langley Research Center, and the NASA Dryden Flight Research Center. Upon completion of a wing glove design, a thorough computational evaluation was necessary to determine if the design can meet the experimental requirements. First, representative CAD models of the testbed aircraft and wing glove were created. Next, a computational grid was generated employing these CAD models. Following this step, full-aircraft CFD flowfield calculations were completed at a variety of flight conditions. Finally, these flowfield data were used to perform boundary-layer stability calculations for the wing glove. Based on the results generated by flowfield and stability calculations, conclusions and recommendations regarding design effectiveness were made, providing guidance for the experiment as it moved beyond the design phase.
机译:层流的空气动力学优势早已使其成为飞机设计中的抢手属性。通过使飞机的各个部分(例如机翼或尾翼)分层,可以实现阻力的显着减少,从而降低燃油消耗率并增加航程。除了环境效益外,由于燃油价格的上涨趋势,提高燃油效率的经济意义也很大。对于民用航空业来说尤其如此,因为该国的燃油消耗量很高,而燃油费用占总运营成本的百分比很高。从层流到湍流的过渡可能是由几种不同的过渡机制引起的,但是横流不稳定存在机翼边界层仍然是要克服的主要障碍。可以用来控制横流不稳定性的一种有前途的技术是使用展向周期性离散粗糙度元素(DRE)。德克萨斯农工大学的飞行研究实验室(FRL)已经表明,一系列DRE可以成功地以超过8.0x10 ^ 6的雷诺数在飞行中自然位置延迟过渡。下一步是将DRE技术应用于运输飞机特有的20x10 ^ 6至30x10 ^ 6之间的雷诺数。美国国家航空航天局(NASA)的“环境责任航空项目”赞助了一次跨音速层流翼式手套实验,以进一步探索DRE技术的功能。该实验将由FRL,NASA兰利研究中心和NASA Dryden飞行研究中心共同进行。一旦完成了护翼设计,就需要进行全面的计算评估,以确定设计是否可以满足实验要求。首先,创建了测试飞机和机翼手套的代表性CAD模型。接下来,使用这些CAD模型生成了计算网格。此步骤之后,在各种飞行条件下完成了全机CFD流场计算。最后,这些流场数据用于对护翼手套进行边界层稳定性计算。根据流场和稳定性计算所产生的结果,得出了有关设计有效性的结论和建议,为实验超出设计阶段提供了指导。

著录项

  • 作者

    Roberts Matthew William;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号