首页> 外文OA文献 >Reaction mechanism of cumene hydroperoxide decomposition in cumene and evaluation of its reactivity hazards
【2h】

Reaction mechanism of cumene hydroperoxide decomposition in cumene and evaluation of its reactivity hazards

机译:异丙基苯中过氧化氢异丙苯分解的反应机理及其反应性危害的评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cumene hydroperoxide (CHP), a type of organic peroxide, is widely used in the chemical industry for diverse applications. However, it decomposes and undergoes highly exothermic runaway reactions under high temperature because of its unstable peroxide functional group. The risk of runaway reaction is intensified by the fact that operation temperature of CHP is close to its onset temperature in many cases.To ensure safe handling of CHP in the chemical industry, a lot of research has been done on it including theoretical research at the microscopic level and experimental research at the macroscopic level. However, the unstable radicals in the CHP decomposition reactions make it difficult to study its reaction pathway, and therefore lead to incomplete understanding of the reaction mechanism. The slow progress in theoretical research hinders the application of the theoretical prediction in experimental research. For experimental research, the lack of integration of operational parameters into the reactivity evaluation limits its application in industrial process. In this thesis, a systematic methodology is proposed to evaluate the reactivity hazards of CHP. This methodology is a combination of theoretical research using computational quantum chemistry method and experimental research using RSSTTM. The theoretical research determined the dominant reaction pathway of CHP decomposition reaction through the study of thermodynamic and kinetic stability, which was applied to the analysis of experimental results. The experimental research investigated the effect of CHP concentration on runaway reactions by analyzing the important parameters including temperature, pressure, self-heat rate and pressure rate. This methodology could also be applied to other organic peroxides or other reactive chemicals. The results of theoretical research on reaction mechanism show that there is a dominant reaction pathway, which consumes most of the CHP in decomposition reaction. This conclusion agrees with the experimental results that 40 wt% is a critical point for almost all important parameters of runaway reactions. In the high concentration range above 40 wt%, some unknown reaction pathways are involved in decomposition of CHP because of lack of cumene. The shift of reaction mechanism causes the change of the effect of concentration on runaway reactions.
机译:异丙苯异丙苯过氧化氢(CHP)是一种有机过氧化物,已广泛用于化学工业中的各种应用。然而,由于其不稳定的过氧化物官能团,它在高温下分解并发生高度放热的失控反应。在许多情况下,CHP的操作温度接近其起始温度会加剧反应失控的风险。为了确保化学工业中CHP的安全处理,已经进行了许多研究,包括在热电联产方面的理论研究。微观层面和宏观层面的实验研究。然而,CHP分解反应中的不稳定基团使得难以研究其反应途径,因此导致对反应机理的不完全了解。理论研究进展缓慢,阻碍了理论预测在实验研究中的应用。对于实验研究,缺乏将操作参数集成到反应性评估中的限制了其在工业过程中的应用。本文提出了一种系统的方法来评价CHP的反应性危害。该方法是使用计算量子化学方法的理论研究和使用RSSTTM的实验研究的结合。理论研究通过热力学和动力学稳定性的研究确定了CHP分解反应的主要反应途径,并将其用于实验结果分析。实验研究通过分析重要参数(包括温度,压力,自热率和压力率)研究了CHP浓度对失控反应的影响。该方法还可以应用于其他有机过氧化物或其他反应性化学物质。反应机理的理论研究结果表明,存在一条主要的反应途径,在分解反应中消耗了大部分的CHP。该结论与实验结果一致,即40 wt%是失控反应几乎所有重要参数的临界点。在高于40 wt%的高浓度范围内,由于缺乏异丙基苯,一些未知的反应途径参与了CHP的分解。反应机理的转变导致浓度对失控反应的影响发生变化。

著录项

  • 作者

    Lu Yuan;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号