首页> 外文OA文献 >Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals
【2h】

Low-temperature solution synthesis of alloys and intermetallic compounds as nanocrystals

机译:合金和金属间化合物作为纳米晶体的低温溶液合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The synthesis of solid state materials has traditionally been accomplished using rigorous heating treatments at high temperatures (1,000?C) to overcome the slow rate of diffusion between two reactants. Re-grinding and re-heating treatments improve the rate of reaction between two solids; however, the high temperatures required to overcome the diffusion barrier limit the products accessible to the most thermodynamically stable phases. In this work, nano-scale solids such as alloys and intermetallics were synthesized via solution techniques where metal compounds are reduced by NaBH4 or n-butyllithium at temperatures below 300?C.To form hollow particles, metal nanoparticles of Co, Ni, Pb were synthesized via reduction by NaBH4 in water and reacted with K2PtCl6, which resulted in the formation of alloys in the case of Co-Pt and Ni-Pt. PbPt intermetallic hollow particles were synthesized by heating a composite of PbO and hollow Pt nanoparticles in tetraethylene glycol (TEG) at 140 ?C. With n-butyllithium as a reducing agent, Au3M (M= Fe, Co, Ni) nanoparticles could be synthesized as isolatable solids in the L12 structure. PtSn and AuCu3 intermetallics were synthesized using NaBH4 and TEG. The PtSn and AuCu3 nanoparticles were characterized by transmission electron microscopy in attempts to learn about the phase diagrams of nanoscale solids.The purpose of this work was to synthesize nanoparticles via solution-mediated routes at low temperatures in compositions and morphologies not observed in the bulk, and learn about the phase diagrams of nanoparticles to understand why it is possible to access solids at temperatures significantly below those used in traditional solid state chemistry.
机译:固态材料的合成传统上是通过在高温(1,000?C)下进行严格的热处理来克服的,这是为了克服两种反应物之间缓慢的扩散速率。重新研磨和重新加热处理可提高两种固体之间的反应速度;但是,克服扩散壁垒所需的高温限制了产品进入最热力学稳定的相。在这项工作中,通过溶液技术合成了纳米级固体,例如合金和金属间化合物,其中金属化合物在低于300°C的温度下被NaBH4或正丁基锂还原。为形成空心颗粒,将Co,Ni,Pb的金属纳米颗粒通过在水中用NaBH4还原而合成,并与K2PtCl6反应,在Co-Pt和Ni-Pt的情况下导致形成合金。通过在140℃下加热PbO和中空Pt纳米颗粒的混合物在四甘醇(TEG)中合成PbPt金属间空心颗粒。使用正丁基锂作为还原剂,可以在L12结构中将Au3M(M = Fe,Co,Ni)纳米颗粒合成为可分离的固体。使用NaBH4和TEG合成了PtSn和AuCu3金属间化合物。通过透射电子显微镜对PtSn和AuCu3纳米颗粒进行了表征,以试图了解纳米级固体的相图。这项工作的目的是通过低温在低温下通过溶液介导的途径合成大体积未观察到的成分和形态的纳米颗粒,并了解纳米颗粒的相图,以了解为什么在低于传统固态化学所用温度的情况下可以进入固体的原因。

著录项

  • 作者

    Vasquez Yolanda;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号