首页> 外文OA文献 >Consolidation of copper and aluminum micro and nanoparticles via equal channel angular extrusion
【2h】

Consolidation of copper and aluminum micro and nanoparticles via equal channel angular extrusion

机译:通过等通道角挤压固结铜和铝的微颗粒和纳米颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrafine grained (UFG), and nanocrystalline (nc) materials are of interest because of the high strength, compared with coarse grained counterparts. Several current methods to fabricate UFG and nc materials result in samples too small for practical use. In addition, the fabrication of nc materials, in particular, is difficult, and defects in the material causes significant reduction in strength and ductility of these materials. The present study uses Equal Channel Angular Extrusion (ECAE) to produce relatively large consolidates of UFG and nc materials. ECAE has been used to consolidate micro and nanocrystalline powders. The behavior of consolidated pure Cu and aluminum alloys in the nano and micron size were explored. The effects of different routes, extrusion temperature, and post-ECAE processing on microstructure and mechanical behavior were studied. Processing parameters were explored to determine the influence of each parameter on the consolidation performance. The goals of experimenting with different processing parameters were to increase the ductility of the material, while maintaining relatively strong specimens. Comparisons were made with a recently developed powder compaction constitutive model and corresponding simulations. ECAE of microcrystalline powders produced relatively ductile materials, with high strength. Swaging of these consolidated powders produced samples which were softer and less ductile in tension, than the non-swaged samples. ECAE produced effective consolidation of Cu nanoparticles with average sizes of 100 nm, with an ultimate tensile strength of 680 MPa, with a fracture strain as much as 10%, which is higher than previously reported 7% [Haouaoui, 2005].
机译:与高强度颗粒材料相比,超细颗粒(UFG)和纳米晶体(nc)材料具有很高的强度,因此受到关注。当前制造UFG和nc材料的几种方法导致样品太小而无法实际使用。另外,特别是nc材料的制造是困难的,并且材料中的缺陷导致这些材料的强度和延展性显着降低。本研究使用等通道角挤压(ECAE)来生产UFG和nc材料的较大固结物。 ECAE已用于固结微粉和纳米粉。探索了固结纯铜和铝合金在纳米和微米尺寸下的行为。研究了不同路线,挤压温度和后ECAE处理对显微组织和力学行为的影响。探索加工参数以确定每个参数对固结性能的影响。试验不同加工参数的目的是增加材料的延展性,同时保持相对坚固的样品。与最近开发的粉末压实本构模型和相应的模拟进行了比较。微晶粉末的ECAE产生了相对易延展的材料,具有较高的强度。对这些固结的粉末进行锻造所产生的样品比未锻造的样品更柔软并且在延展性方面更差。 ECAE有效地固结了平均尺寸为100 nm的Cu纳米颗粒,极限抗拉强度为680 MPa,断裂应变高达10%,高于先前报道的7%[Haouaoui,2005]。

著录项

  • 作者

    Hutchins Cathleen Ruth;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号