首页> 外文OA文献 >A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data
【2h】

A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data

机译:一种使用外部验证数据进行灵敏度分析的方法,以评估多个曝光变量中测量误差的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. Methods: We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Results: Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. Conclusions: The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.
机译:背景:自我报告的饮食摄入量的测量误差已知会使饮食摄入量与目标健康结果(如疾病的风险)之间的相关性产生偏差。度量不正确的混杂因素会使关联进一步失真,从而导致无效的结果和结论。但是,当没有内部验证数据时,很难为关联中的偏差进行调整。方法:我们提出了一种方法,用于在没有内部验证数据的情况下,由于饮食摄入量的测量误差和错误计量的混杂因素,来调整饮食-疾病关联(以下称为关联)中的偏差。该方法将有关自我报告工具有效性的先验信息与观察到的数据相结合,以针对关联中的偏差进行调整。我们将提出的方法与忽略混杂因素的方法和完全忽略测量误差的方法进行了比较。我们评估了估计值对文献报告的验证数据中各种测量误差,误差相关性和不确定性的敏感性。我们将这些方法应用于水果和蔬菜(FV)摄入量,吸烟(混杂因素)以及来自欧洲癌症与营养前瞻性研究的全因死亡率数据。结果:使用建议的方法可使FV摄入量与死亡率之间的关联强度增加大约四倍。对于弱相关的误差,混杂因素中的测量误差对FV摄入的危险比估算值影响最小。对于强错误相关性,效果更为明显。结论:所提出的方法允许对测量误差结构进行敏感性分析,并考虑所报告的有效性系数中的不确定性。该方法可用于评估方向并量化由于混杂因素中的测量误差而引起的关联偏差。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号