首页> 外文OA文献 >Sensitivity of seasonal precipitation extremes to model configuration of the Canadian Regional Climate Model over eastern Canada using historical simulations
【2h】

Sensitivity of seasonal precipitation extremes to model configuration of the Canadian Regional Climate Model over eastern Canada using historical simulations

机译:使用历史模拟,季节性降水极端值对加拿大东部加拿大区域气候模型的模型构造的敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961–1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere–Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.
机译:这项研究使用16种模拟(1961–1990年),通过最新版本的加拿大区域气候模型(CRCM),模拟了季节性(冬季和夏季)极端降水的不确定性,并考虑了以下四个不确定性来源:(a)大小;(b)大气-海洋全球气候驱动模型(AOGCM);(c)给定AOGCM的集合成员;(d)CRCM的内部可变性。这16个仿真是由2个AOGCM(即CGCM3,成员4和5,以及ECHAM5,成员1和2)和一组重新分析产品(即ERA40)驱动的,使用两种域大小(AMNO,覆盖整个北美)和QC,这是一个以魁北克省为中心的较小区域)。除了平均季节性降水外,还使用三个季节指数来表征不同类型的降水变化和极端情况:湿天数,连续干旱天数的最大值和日降水量的95%。结果表明,夏季不确定性的最大来源来自AOGCM的选择和域大小的选择,然后是给定AOGCM的成员的选择。在冬天,成员的选择比域大小的选择更为重要。冬季模拟的方差敏感性大于夏季,突出了边界条件下大规模环流的重要性。该研究证实,模拟的强降雨的不确定性高于平均降水的不确定性,大湖区(圣劳伦斯山谷)的某些地区表现出系统性的较高不确定性值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号