首页> 外文OA文献 >Marginal false discovery rate control for likelihood-based penalized regression models
【2h】

Marginal false discovery rate control for likelihood-based penalized regression models

机译:惩罚可能性方法的边际错误发现率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The recent popularity of penalized regression in high-dimensional dataanalysis has lead to a demand for new inferential tools for these models. Falsediscovery rate control is a well known aspect of other high-dimensional dataanalysis approaches that has only recently been considered in the context ofpenalized regression. However much of the current research has been focusedprimarily on lasso-penalized linear regression, despite the availability ofsoftware that can fit penalized regression models to a variety oflikelihood-based models. In this paper we derive a method of estimating themarginal false discovery rate for penalized likelihood methods and demonstrateits application to penalized logistic and penalized Cox regression models. Ourapproach is fast, flexible and can be applied to a variety of penalty functionsincluding lasso, elastic net, MCP, and MNet. We derive theoretical resultsunder which the proposed estimator is valid, and use simulation studies todemonstrate that the approach is reasonably robust, albeit slightlyconservative, when these assumptions are violated. The practical utility of themethod is demonstrated on two gene expression data sets with binary and surivaloutcomes, which we respectively analyze using penalized logistic and penalizedCox regression.
机译:最近在高维数据分析中受到惩罚回归的普及,导致这些模型的新推理工具的需求。 Falsediscovery速率控制是其他高维数据分析方法的众所周知的方面,该方法最近仅考虑在阶级化回归的上下文中。然而,尽管可以将受到惩罚的回归模型适用于基于吉祥的模型,但许多研究已经专注于租住租赁线性回归。在本文中,我们推出了一种估算惩罚似然方法的主题虚假发现率的方法,并将应用于惩罚的物流和惩罚的Cox回归模型。 Ouraproach是快速,灵活的,可应用于各种惩罚功能,包括套索,弹性网,MCP和MNET。我们推出了所提出的估算器有效的理论结果,并使用模拟研究致力于当这些假设违反这些假设时,这种方法具有略微稳健。 HoseThod的实用实用性在两种基因表达数据集上证明了具有二元和同种排除的基因表达数据集,我们分别使用惩罚的物流和罚金毒素回归分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号