首页> 外文期刊>Nature reviews neuroscience >Marginal false discovery rates for penalized regression models
【24h】

Marginal false discovery rates for penalized regression models

机译:惩罚回归模型的边际虚假发现率

获取原文
获取原文并翻译 | 示例

摘要

Penalized regression methods are an attractive tool for high-dimensional data analysis, but their widespread adoption has been hampered by the difficulty of applying inferential tools. In particular, the question How reliable is the selection of those features? has proved difficult to address. In part, this difficulty arises from defining false discoveries in the classical, fully conditional sense, which is possible in low dimensions but does not scale well to high-dimensional settings. Here, we consider the analysis of marginal false discovery rates (mFDRs) for penalized regression methods. Restricting attention to the mFDR permits straightforward estimation of the number of selections that would likely have occurred by chance alone, and therefore provides a useful summary of selection reliability. Theoretical analysis and simulation studies demonstrate that this approach is quite accurate when the correlation among predictors is mild, and only slightly conservative when the correlation is stronger. Finally, the practical utility of the proposed method and its considerable advantages over other approaches are illustrated using gene expression data from The Cancer Genome Atlas and genome-wide association study data from the Myocardial Applied Genomics Network.
机译:惩罚的回归方法是高维数据分析的有吸引力的工具,但他们的广泛采用被难以应用推理工具受到阻碍。特别是问题是选择这些功能的可靠性?证明难以解决。部分地,这种困难是在经典的完全条件的感觉中定义虚假发现,这在低维度下可能是不可能的,但对高维设置不符。在这里,我们考虑对惩罚的回归方法进行边际假发现率(MFDR)的分析。限制对MFDR的关注允许直接估计可能仅发生机会可能发生的选择数量,因此提供了选择可靠性的有用摘要。理论分析和仿真研究表明,当预测器之间的相关性温和时,这种方法非常准确,并且只有在相关性更强时略微保守。最后,使用来自癌症基因组地图集的基因表达数据和来自心肌应用基因组网络网络的基因组表达数据和基因组关联研究数据的基因表达数据说明了所提出的方法的实用实用性及其与其他方法相当大的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号