首页> 外文OA文献 >Vibrato and automatic differentiation for high-order derivatives and sensitivities of financial options
【2h】

Vibrato and automatic differentiation for high-order derivatives and sensitivities of financial options

机译:Vibrato和高阶导数的自动微分和  金融期权的敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with the computation of second or higher order greeks offinancial securities. It combines two methods, Vibrato and automaticdifferentiation and compares with other methods. We show that this combinedtechnique is faster than standard finite difference, more stable than automaticdifferentiation of second order derivatives and more general than MalliavinCalculus. We present a generic framework to compute any greeks and presentseveral applications on different types of financial contracts: European andAmerican options, multidimensional Basket Call and stochastic volatility modelssuch as Heston's model. We give also an algorithm to compute derivatives forthe Longstaff-Schwartz Monte Carlo method for American options. We also extendautomatic differentiation for second order derivatives of options withnon-twice differentiable payoff. 1. Introduction. Due to BASEL III regulations,banks are requested to evaluate the sensitivities of their portfolios every day(risk assessment). Some of these portfolios are huge and sensitivities are timeconsuming to compute accurately. Faced with the problem of building a softwarefor this task and distrusting automatic differentiation for non-differentiablefunctions, we turned to an idea developed by Mike Giles called Vibrato. Vibratoat core is a differentiation of a combination of likelihood ratio method andpathwise evaluation. In Giles [12], [13], it is shown that the computing time,stability and precision are enhanced compared with numerical differentiation ofthe full Monte Carlo path. In many cases, double sensitivities, i.e. secondderivatives with respect to parameters, are needed (e.g. gamma hedging). Finitedifference approximation of sensitivities is a very simple method but itsprecision is hard to control because it relies on the appropriate choice of theincrement. Automatic differentiation of computer programs bypass the difficultyand its computing cost is similar to finite difference, if not cheaper. But infinance the payoff is never twice differentiable and so generalized derivativeshave to be used requiring approximations of Dirac functions of which theprecision is also doubtful. The purpose of this paper is to investigate thefeasibility of Vibrato for second and higher derivatives. We will first compareVibrato applied twice with the analytic differentiation of Vibrato and showthat it is equivalent, as the second is easier we propose the best compromisefor second derivatives: Automatic Differentiation of Vibrato. In [8], Capriottihas recently investigated the coupling of different mathematical methods --namely pathwise and likelihood ratio methods -- with an Automatic differ
机译:本文涉及二阶或高阶希腊津津公民证券的计算。它结合了两种方法,振动和自动化,并与其他方法进行比较。我们表明,这款联合技术比标准有限差异快,比二阶衍生物的自动化率更稳定,比Malliavincalcululululululululululululululululululululul。我们展示了一款通用框架,用于计算不同类型的金融合同上的任何希腊语和立即应用程序:欧洲AndaMerican选项,多维篮子呼叫和随机波动率模型作为Heston的模型。我们还提供了一种计算衍生工具的算法,为美国选项提供了Longstaff-Schwartz Monte Carlo方法。我们还扩展了禁止期权的二阶衍生物的自动分化,两次可分辨率的回报。 1.简介。由于基塞尔三世法规,要求银行每天评估其投资组合的敏感性(风险评估)。这些投资组合中的一些是巨大的,敏感性是计时来计算精确计算。面对构建该任务的软件的问题,并不信任非不同罚款的自动分化,我们转向了由迈克·吉尔斯开发的想法,称为颤音。克拉特透过核心是似然比方法和平评估的组合的差异。在Giles [12],[13]中,示出了与完整蒙特卡罗路径的数值分化相比,增强了计算时间,稳定性和精度。在许多情况下,需要双敏感性,即相对于参数的第二个敏感性(例如,γ套期)。敏感性的Finitedifference近似是一种非常简单的方法,但它的预设很难控制,因为它依赖于适当的灌注选择。计算机程序自动化绕过难度和其计算成本与有限差异相似,如果不便于。但是,第十二个回报绝不是两次可分辨率,并且所以推广的衍生衍生物需要用于近似的DIRAC函数,其中Precision也是值得怀疑的。本文的目的是研究振动率为第二和更高衍生物的可行性。我们将首先使用颤音的分析分化施用两次,并且展示它是等同的,因为第二种更容易,我们提出了第二种衍生物的最佳折衷主义:振动的自动分化。在[8]中,Capriotihas最近调查了不同数学方法的耦合 - 动态和似然比方法 - 具有自动差异

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号