首页> 外文期刊>Journal of Computational Physics >SENSITIVITY DERIVATIVES FOR ADVANCED CFD ALGORITHM AND VISCOUS MODELING PARAMETERS VIA AUTOMATIC DIFFERENTIATION
【24h】

SENSITIVITY DERIVATIVES FOR ADVANCED CFD ALGORITHM AND VISCOUS MODELING PARAMETERS VIA AUTOMATIC DIFFERENTIATION

机译:先进的CFD算法和粘性建模参数通过自动微分的灵敏度导数

获取原文
获取原文并翻译 | 示例

摘要

The computational technique of automatic differentiation (AD) is applied to a complicated computer program to illustrate the simplicity, efficiency, and versatility of AD with complex algorithms for use within a sensitivity analysis. Many algorithmic and physics modeling coefficients appear in computer programs that are routinely set in an ad hoc manner; AD can be used to enhance computer programs with derivative information suitable for guiding formal sensitivity analyses, which allows these coefficient values to be chosen in a rigorous manner to achieve particular program properties such as an improved convergence rate or improved accuracy. In this paper, AD is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives with respect to algorithmic and physics modeling parameters typical of those needed for sensitivity analyses. Calculations are performed for an ONERA Ms wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modeling. Results obtained via AD are compared for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases. [References: 34]
机译:自动微分(AD)的计算技术应用于复杂的计算机程序,以说明在灵敏度分析中使用的具有复杂算法的AD的简单性,效率和多功能性。许多算法和物理建模系数出现在计算机程序中,这些系数通常以临时方式设置。 AD可用于使用派生信息增强计算机程序,这些信息适合指导形式敏感性分析,从而允许以严格的方式选择这些系数值,以实现特定的程序属性,例如提高的收敛速度或提高的准确性。在本文中,将AD应用于三维薄层Navier-Stokes多重网格流动求解器,以评估针对灵敏度分析所需的典型算法和物理建模参数,获得精确的灵敏度导数的可行性和计算影响。使用Baldwin-Lomax和Johnson-King湍流模型对跨音速流动的ONERA Ms机翼进行了计算。相对于两组不同的输入参数,机翼升力,阻力和俯仰力矩系数有所不同。第一组由计算算法的二阶和四阶阻尼系数组成,而第二组由粘性湍流物理建模中的两个参数组成。将通过AD获得的结果在准确性和计算效率上与通过差异除法(DD)获得的结果进行比较。在某些情况下,AD结果是准确的,非常容易获得的,并且显示出比DD获得的显着的计算优势。 [参考:34]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号