首页> 外文OA文献 >Estimating Traffic and Anomaly Maps via Network Tomography
【2h】

Estimating Traffic and Anomaly Maps via Network Tomography

机译:通过网络层析成像估算交通和异常地图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mapping origin-destination (OD) network traffic is pivotal for networkmanagement and proactive security tasks. However, lack of sufficient flow-levelmeasurements as well as potential anomalies pose major challenges towards thisgoal. Leveraging the spatiotemporal correlation of nominal traffic, and thesparse nature of anomalies, this paper brings forth a novel framework to mapout nominal and anomalous traffic, which treats jointly important networkmonitoring tasks including traffic estimation, anomaly detection, and trafficinterpolation. To this end, a convex program is first formulated with nuclearand $ell_1$-norm regularization to effect sparsity and low rank for thenominal and anomalous traffic with only the link counts and a {it small}subset of OD-flow counts. Analysis and simulations confirm that the proposedestimator can {em exactly} recover sufficiently low-dimensional nominaltraffic and sporadic anomalies so long as the routing paths are sufficiently"spread-out" across the network, and an adequate amount of flow counts arerandomly sampled. The results offer valuable insights about data acquisitionstrategies and network scenaria giving rise to accurate traffic estimation. Forpractical networks where the aforementioned conditions are possibly violated,the inherent spatiotemporal traffic patterns are taken into account by adoptinga Bayesian approach along with a bilinear characterization of the nuclear and$ell_1$ norms. The resultant nonconvex program involves quadratic regularizerswith correlation matrices, learned systematically from (cyclo)stationaryhistorical data. Alternating-minimization based algorithms with provableconvergence are also developed to procure the estimates. Insightful tests withsynthetic and real Internet data corroborate the effectiveness of the novelschemes.
机译:映射原始目的地(OD)网络流量对于网络管理和主动安全任务至关重要。但是,缺乏足够的流量测量以及潜在的异常情况对该目标提出了重大挑战。利用名义流量的时空相关性和异常的稀疏性,本文提出了一个映射名义流量和异常流量的新颖框架,该框架共同处理重要的网络监控任务,包括流量估计,异常检测和流量插值。为此,首先使用核和$ ell_1 $范数正则来制定凸程序,以仅通过链接计数和OD流计数的一个子集来实​​现名义流量和异常流量的稀疏性和低等级。分析和模拟证实,只要路由路径在网络中充分“散布”,并且随机抽取了足够数量的流量,建议的估计器就可以{准确地恢复}低维的名义流量和零星的异常情况。结果提供了有关数据采集策略和网络场景的宝贵见解,从而可以进行准确的流量估算。对于可能违反上述条件的实际网络,通过采用贝叶斯方法以及核规范和线性规范的双线性表征,考虑了固有的时空交通模式。所得的非凸程序涉及具有相关矩阵的二次正则化器,可从(循环)平稳历史数据中系统地学习。还开发了具有可证明收敛性的基于交替最小化的算法来获取估计值。具有综合性和真实互联网数据的有见地的测试证实了这种新颖方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号