首页> 外文期刊>IEEE/ACM Transactions on Networking >Estimating Traffic and Anomaly Maps via Network Tomography
【24h】

Estimating Traffic and Anomaly Maps via Network Tomography

机译:通过网络层析成像估计交通和异常地图

获取原文
获取原文并翻译 | 示例

摘要

Mapping origin-destination (OD) network traffic is pivotal for network management and proactive security tasks. However, lack of sufficient flow-level measurements as well as potential anomalies pose major challenges towards this goal. Leveraging the spatiotemporal correlation of nominal traffic, and the sparse nature of anomalies, this paper brings forth a novel framework to map out nominal and anomalous traffic, which treats jointly important network monitoring tasks including traffic estimation, anomaly detection, and traffic interpolation. To this end, a convex program is first formulated with nuclear and l1-norm regularization to effect sparsity and low rank for the nominal and anomalous traffic with only the link counts and a small subset of OD-flow counts. Analysis and simulations confirm that the proposed estimator can exactly recover sufficiently low-dimensional nominal traffic and sporadic anomalies so long as the routing paths are sufficiently “spread-out” across the network, and an adequate amount of flow counts are randomly sampled. The results offer valuable insights about data acquisition strategies and network scenaria giving rise to accurate traffic estimation. For practical networks where the aforementioned conditions are possibly violated, the inherent spatiotemporal traffic patterns are taken into account by adopting a Bayesian approach along with a bilinear characterization of the nuclear and l1 norms. The resultant nonconvex program involves quadratic regularizers with correlation matrices, learned systematically from (cyclo)stationary historical data. Alternating-minimization based algorithms with provable convergence are also developed to procure the estimates. Insightful tests with synthetic and real Internet data corroborate the effectiveness of the novel schemes.
机译:映射原始目标(OD)网络流量对于网络管理和主动安全任务至关重要。但是,缺乏足够的流量水平测量以及潜在的异常情况对该目标提出了重大挑战。充分利用名义流量的时空相关性和异常的稀疏性,提出了一种映射名义流量和异常流量的新颖框架,该框架共同处理重要的网络监控任务,包括流量估计,异常检测和流量插值。为此,首先使用核和l1范数正则制定凸程序,以仅通过链接计数和一小部分OD流量计数实现名义流量和异常流量的稀疏性和低等级。分析和仿真证实,只要路由路径在网络中充分“散布”,并且可以对任意数量的流量计数进行随机采样,建议的估计器就可以准确地恢复足够的低维标称流量和零星的异常情况。结果提供了有关数据采集策略和网络场景的宝贵见解,从而可以进行准确的流量估算。对于可能违反上述条件的实际网络,通过采用贝叶斯方法以及核规范和l1规范的双线性特征来考虑固有的时空流量模式。所得的非凸程序涉及具有相关矩阵的二次正则化器,这些正则化器是从(循环)平稳历史数据中系统地学习的。还开发了具有可证明收敛性的基于交替最小化的算法来获取估计值。对合成的和真实的Internet数据进行的有见地的测试证实了新方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号