首页> 外文OA文献 >Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data
【2h】

Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data

机译:远程感测数据的土壤和裁剪细分深入学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most challenging problems in precision agriculture is to correctly identify and separate crops from the soil. Current precision farming algorithms based on artificially intelligent networks use multi-spectral or hyper-spectral data to derive radiometric indices that guide the operational management of agricultural complexes. Deep learning applications using these big data require sensitive filtering of raw data to effectively drive their hidden layer neural network architectures. Threshold techniques based on the normalized difference vegetation index (NDVI) or other similar metrics are generally used to simplify the development and training of deep learning neural networks. They have the advantage of being natural transformations of hyper-spectral or multi-spectral images that filter the data stream into a neural network, while reducing training requirements and increasing system classification performance. In this paper, to calculate a detailed crop/soil segmentation based on high resolution Digital Surface Model (DSM) data, we propose the redefinition of the radiometric index using a directional mathematical filter. To further refine the analysis, we feed this new radiometric index image of about 3500 × 4500 pixels into a relatively small Convolution Neural Network (CNN) designed for general image pattern recognition at 28 × 28 pixels to evaluate and resolve the vegetation correctly. We show that the result of applying a DSM filter to the NDVI radiometric index before feeding it into a Convolutional Neural Network can potentially improve crop separation hit rate by 65%.
机译:精密农业中最具挑战性的问题之一是正确识别和分离土壤中的作物。基于人工智能网络的当前精密农业算法使用多光谱或超光谱数据来导出指导农业复合物的运营管理的辐射识别。使用这些大数据的深度学习应用需要对原始数据的敏感过滤,以有效地驱动其隐藏的层神经网络架构。基于归一化差异植被指数(NDVI)或其他类似指标的阈值技术通常用于简化深度学习神经网络的发展和培训。它们具有自然变换的优势,可以将数据流过滤到神经网络中的超光谱或多光谱图像,同时降低培训要求和增加系统分类性能。在本文中,为了基于高分辨率数字表面模型(DSM)数据来计算详细的作物/土壤分割,我们建议使用定向数学滤波器重新定义辐射率索引。为了进一步优化分析,我们将该新的辐射指数图像的约3500×4500像素馈送到相对较小的卷积神经网络(CNN),该网络(CNN)设计用于28×28像素的一般图像图案识别,以便正确地评估和解析植被。我们表明,将DSM滤波器应用于NDVI辐射指数的结果,然后将其送入卷积神经网络之前可能会将作物分离击中率提高65%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号