首页> 外文OA文献 >Learning from Longitudinal Face Demonstration—Where Tractable Deep Modeling Meets Inverse Reinforcement Learning
【2h】

Learning from Longitudinal Face Demonstration—Where Tractable Deep Modeling Meets Inverse Reinforcement Learning

机译:从纵向表演中学习 - 贸易的深层建模符合逆钢筋学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel Generative Probabilistic Modeling under anInverse Reinforcement Learning approach, named Subject-dependent Deep AgingPath (SDAP), to model the facial structures and the longitudinal face agingprocess of given subjects. The proposed SDAP is optimized using tractablelog-likelihood objective functions with Convolutional Neural Networks baseddeep feature extraction. In addition, instead of using a fixed agingdevelopment path for all input faces and subjects, SDAP is able to provide themost appropriate aging development path for each subject that optimizes thereward aging formulation. Unlike previous methods that can take only one imageas the input, SDAP allows multiple images as inputs, i.e. all information of asubject at either the same or different ages, to produce the optimal aging pathfor the subject. Finally, SDAP allows efficiently synthesizing in-the-wildaging faces without a complicated pre-processing step. The proposed method isexperimented in both tasks of face aging synthesis and cross-age faceverification. The experimental results consistently show the state-of-the-artperformance using SDAP on numerous face aging databases, i.e. FG-NET, MORPH,AginG Faces in the Wild (AGFW), and Cross-Age Celebrity Dataset (CACD). Themethod also performs on the large-scale Megaface challenge 1 to demonstrate theadvantages of the proposed solution.
机译:本文介绍了一种新的生成概率模型,根据逆钢筋学习方法,命名依赖性深度老化路径(SDAP),以模拟给定受试者的面部结构和纵向面镜处理过程。使用TractableleLog似然客观函数优化了所提出的SDAP,利用卷积神经网络的基本特征提取。另外,除了用于所有输入面和对象的固定老化发展路径,SDAP能够为每个受试者提供对其优化的每个受试者的对比老化开发路径。与以前的方法不同,可以只采用一个想象力输入,SDAP允许多个图像作为输入,即ASUB15的所有信息,以产生对象的最佳老化路径。最后,SDAP允许在没有复杂的预处理步骤的情况下有效地合成泄露的面部。所提出的方法在面部老化合成和交叉面部造成的两项任务中产生。实验结果始终如一地显示了使用SDAP在许多面部老化数据库上的最新状态,即FG-Net,Morph,野生(AGFW)的老化面,和跨年名人数据集(CACD)。 TheThod还在大规模的MegaFace挑战1上表演,以证明所提出的解决方案的Thevantages。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号