首页> 外文OA文献 >Modeling and Experimental Study for Online Measurement of Hydraulic Cylinder Micro Leakage Based on Convolutional Neural Network
【2h】

Modeling and Experimental Study for Online Measurement of Hydraulic Cylinder Micro Leakage Based on Convolutional Neural Network

机译:基于卷积神经网络的液压缸微泄漏在线测量建模与实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Internal leakage is the most common failure of hydraulic cylinder; when it increases, it decreases volumetric efficiency, pressure and speed of the hydraulic cylinder, and can seriously affect the normal operation of the hydraulic cylinder, so it is important to measure it, especially to measure it online. Firstly, the principle of internal leakage online measurement is proposed, including the online measurement system, the fixed mode of the strain gauge and the mathematical model of the flow-strain signal conversion. Secondly, an experimental system is established to collect internal leakages and strain values, and the data is processed. Finally, the convolutional neural network (CNN), BP neural network (BPNN), Radial Basis Function Network (RBF), and Support Vector Regression (SVR) are used to predict the hydraulic cylinder leakage; the comparison of experimental results show that the CNN has high accuracy and high efficiency. This study provides a new idea for online measurement of small flow on other hydraulic components.
机译:内部泄漏是液压缸最常见的故障;当它增加时,它会降低液压缸的体积效率,压力和速度,并且可以严重影响液压缸的正常操作,因此可以测量它是重要的,特别是在线测量它。首先,提出了内部泄漏在线测量的原理,包括在线测量系统,应变计的固定模式以及流量应变信号转换的数学模型。其次,建立实验系统以收集内部泄漏和应变值,并处理数据。最后,卷积神经网络(CNN),BP神经网络(BPNN),径向基函数网络(RBF)和支持向量回归(SVR)用于预测液压缸泄漏;实验结果的比较表明,CNN具有高精度和高效率。本研究提供了在线测量其他液压部件的新思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号