首页> 外文OA文献 >A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries
【2h】

A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries

机译:电动车辆锂离子电池动态估计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the increasing environmental concerns, plug-in electric vehicles will eventually become the main transportation tools in future smart cities. As a key component and the main power source, lithium-ion batteries have been an important object of research studies. In order to efficiently control electric vehicle powertrains, the state of charge (SOC) of lithium-ion batteries must be accurately estimated by the battery management system. This paper aims to provide a more accurate dynamic SOC estimation method for lithium-ion batteries. A dynamic Thevenin model with variable parameters affected by the temperature and SOC is established to model the battery. An unscented Kalman particle filter (UPF) algorithm is proposed based on the unscented Kalman filter (UKF) algorithm and the particle filter (PF) algorithm to generate nonlinear particle filter according to the advantages and disadvantages of various commonly used filtering algorithms. The simulation results show that the unscented Kalman particle filter algorithm based on the dynamic Thevenin model can predict the SOC in real time and it also has strong robustness against noises.
机译:随着环境问题的增加,插入式电动汽车最终将成为未来智能城市的主要运输工具。作为关键部件和主电源,锂离子电池是研究研究的重要对象。为了有效地控制电动车辆动力系统,电池管理系统必须精确地估计锂离子电池的充电状态(SOC)。本文旨在为锂离子电池提供更准确的动态SOC估计方法。建立了具有温度和SOC影响的可变参数的动态临时模型,以模拟电池。基于Unscented Kalman滤波器(UKF)算法和粒子滤波器(PF)算法,根据各种常用的滤波算法的优点和缺点来提出基于未入的Kalman滤波器(UKF)算法和粒子滤波器(PF)算法来提出不合适的卡尔曼粒子滤波器(UPF)算法。仿真结果表明,基于动态紫色模型的无创的卡尔曼粒子滤波器算法可以实时预测SOC,并且它还具有强大的鲁棒性对抗噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号