首页> 外文OA文献 >Object Detection Network Based on Feature Fusion and Attention Mechanism
【2h】

Object Detection Network Based on Feature Fusion and Attention Mechanism

机译:基于特征融合和注意机制的对象检测网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, almost all of the current top-performing object detection networks use CNN (convolutional neural networks) features. State-of-the-art object detection networks depend on CNN features. In this work, we add feature fusion in the object detection network to obtain a better CNN feature, which incorporates well deep, but semantic, and shallow, but high-resolution, CNN features, thus improving the performance of a small object. Also, the attention mechanism was applied to our object detection network, AF R-CNN (attention mechanism and convolution feature fusion based object detection), to enhance the impact of significant features and weaken background interference. Our AF R-CNN is a single end to end network. We choose the pre-trained network, VGG-16, to extract CNN features. Our detection network is trained on the dataset, PASCAL VOC 2007 and 2012. Empirical evaluation of the PASCAL VOC 2007 dataset demonstrates the effectiveness and improvement of our approach. Our AF R-CNN achieves an object detection accuracy of 75.9% on PASCAL VOC 2007, six points higher than Faster R-CNN.
机译:近年来,几乎所有当前的顶级性能检测网络都使用CNN(卷积神经网络)特征。最先进的对象检测网络取决于CNN特征。在这项工作中,我们在对象检测网络中添加了功能融合,以获得更好的CNN功能,它包含深度,但语义和浅,但高分辨率,CNN特征,从而提高了小物体的性能。此外,注意机制应用于我们的对象检测网络,AF R-CNN(注意机制和卷积特征融合的基于物体检测),增强了显着特征的影响并削弱了背景干扰。我们的AF R-CNN是一端到终端网络。我们选择预先训练的网络VGG-16,以提取CNN功能。我们的检测网络在数据集,Pascal VOC 2007和2012上培训。Pascal VOC 2007 Dataset对Pascal VOC的实证评估展示了我们方法的有效性和改进。我们的AF R-CNN在Pascal VOC 2007上实现了75.9%的物体检测精度,比更快的R-CNN高六点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号