首页> 外文期刊>Neurocomputing >Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery
【24h】

Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery

机译:基于自适应的多级特征融合与关注网络,用于遥感图像中的任意面向对象检测

获取原文
获取原文并翻译 | 示例

摘要

Compared with the classic object detection problem, detecting objects in aerial images has some special challenges including huge orientation variations, complicated and large background, and wide multi scale distribution. Considering these three challenges together, we propose a novel arbitrary-oriented object detection framework consisting of three main parts. Firstly, the Cascading Attention Network (CA-Net) composed of a patching self-attention module and a supervised spatial attention module is proposed for enhancing the feature representations from objects of interest and suppressing the background noises in Feature Pyramid Network (FPN) from coarse to fine. Then, the Adaptive Feature Concatenate Network (AFC-Net) is proposed to adaptively stack the feature maps pooled from all FPN levels as well as the global semantic features, for dealing with the multi-scale change of objects. Lastly, the OBB Multi-Definition and Selection Strategy (OBB-MDS-Strategy) is proposed to regress rotated bounding boxes more smoothly and detect oriented objects more accurately in the training process. Our experiments are conducted on two common and challenging aerial datasets, i.e., DOTA and HRSC2016. Experiments results show that the proposed method has superior performances in multi-orientated objects detection compared with the representative methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:与经典对象检测问题相比,检测航空图像中的对象具有一些特殊挑战,包括巨大的定向变化,复杂和大的背景,以及宽的多尺度分布。考虑到这三个挑战在一起,我们提出了一种由三个主要部分组成的新型任意面向物体检测框架。首先,提出了由修补自我关注模块和监督的空间注意模块组成的级联关注网络(CA-Net),用于增强来自感兴趣对象的特征表示,并抑制来自粗糙的金字塔网络(FPN)中的背景噪声罚款。然后,建议自适应特征串联网络(AFC-NET)自适应地堆叠从所有FPN级别汇集的特征映射以及全局语义特征,以处理对象的多尺度变化。最后,建议OBB多定义和选择策略(OBB-MDS-rondation)(OBB-MDS-策略)将旋转边界框更平滑地分解并在训练过程中更准确地检测面向对象。我们的实验是在两个共同且挑战的空中数据集,即DOTA和HRSC2016上进行的。实验结果表明,与代表方法相比,该方法在多定向对象检测中具有优异的性能。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号