首页> 外文OA文献 >De-aliasing Undersampled Volume Images for Visualization
【2h】

De-aliasing Undersampled Volume Images for Visualization

机译:取消叠加欠采样的卷图像进行可视化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present and illustrate a new technique, Image Correlation Supersampling (ICS), for resampling volume data that are undersampled in one dimension. The resulting data satisfies the sampling theorem, and, therefore, many visualization algorithms that assume the theorem is satisfied can be applied to the data. Without the supersampling the visualization algorithms create artifacts due to aliasing. The assumptions made in developing the algorithm are often satisfied by data that is undersampled temporally. Through this supersampling we can completely characterize phenomena with measurements at a coarser temporal sampling rate than would otherwise be necessary. This can save acquisition time and storage space, permit the study of faster phenomena, and allow their study without introducing aliasing artifacts. The resampling technique relies on a priori knowledge of the measured phenomenon, and applies, in particular, to scalar concentration measurements of fluid flow. Because of the characteristics of fluid flow, an image deformation that takes each slice image to the next can be used to calculate intermediate slice images at arbitrarily fine spacing. We determine the deformation with an automatic, multi-resolution algorithm.
机译:我们介绍并说明了一种新技术,即图像相关超级采样(ICS),用于对一维欠采样的体积数据进行重新采样。结果数据满足采样定理,因此,可以将许多假定定理得到满足的可视化算法应用于数据。如果不进行超采样,则可视化算法会因混叠而产生伪影。在开发算法时所做的假设通常会被在时间上欠采样的数据所满足。通过这种超级采样,我们可以用比原本必需的采样率更高的时间采样率来完全表征现象。这样可以节省采集时间和存储空间,可以研究更快的现象,并且可以在不引入混叠伪影的情况下进行研究。重采样技术依赖于对所测量现象的先验知识,尤其适用于流体流量的标量浓度测量。由于流体的流动特性,可以使用将每个切片图像带到下一个切片的图像变形来以任意精细的间距计算中间切片图像。我们使用自动的多分辨率算法确定变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号