首页> 美国政府科技报告 >De-aliasing Undersampled Volume Images for Visualization
【24h】

De-aliasing Undersampled Volume Images for Visualization

机译:对可视化的未采样卷图像进行消除锯齿处理

获取原文

摘要

We present and illustrate a new technique, Image Correlation Supersampling (ICS), for resampling volume data that are undersampled in one dimension. The resulting data satisfies the sampling theorem, and, therefore, many visualization algorithms that assume the theorem is satisfied can be applied to the data. Without the supersampling the visualization algorithms create artifacts due to aliasing. The assumptions made in developing the algorithm are often satisfied by data that is undersampled temporally. Through this supersampling we can completely characterize phenomena with measurements at a coarser temporal sampling rate than would otherwise be necessary. This can save acquisition time and storage space, permit the study of faster phenomena, and allow their study without introducing aliasing artifacts. The resampling technique relies on a priori knowledge of the measured phenomenon, and applies, in particular, to scalar concentration measurements of fluid flow. Because of the characteristics of fluid flow, an image deformation that takes each slice image to the next can be used to calculate intermediate slice images at arbitrarily fine spacing. We determine the deformation with an automatic, multi- resolution algorithm.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号