首页> 外文OA文献 >A New Approximate Analytical Solutions for Two- and Three-Dimensional Unsteady Viscous Incompressible Flows by Using the Kinetically Reduced Local Navier-Stokes Equations
【2h】

A New Approximate Analytical Solutions for Two- and Three-Dimensional Unsteady Viscous Incompressible Flows by Using the Kinetically Reduced Local Navier-Stokes Equations

机译:通过使用动力学降低的本地Navier-Stokes方程,通过使用动力学减少的两维不稳定粘性不可压缩流动的新近似分析解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, the kinetically reduced local Navier-Stokes equations are applied to the simulation of two- and three-dimensional unsteady viscous incompressible flow problems. The reduced differential transform method is used to find the new approximate analytical solutions of these flow problems. The new technique has been tested by using four selected multidimensional unsteady flow problems: two- and three-dimensional Taylor decaying vortices flow, Kovasznay flow, and three-dimensional Beltrami flow. The convergence analysis was discussed for this approach. The numerical results obtained by this approach are compared with other results that are available in previous works. Our results show that this method is efficient to provide new approximate analytic solutions. Moreover, we found that it has highly precise solutions with good convergence, less time consuming, being easily implemented for high Reynolds numbers, and low Mach numbers.
机译:在这项工作中,动力学减少的本地Navier-Stokes方程应用于模拟两维不稳定的粘性不可压缩流出问题。降低的差分变换方法用于找到这些流动问题的新近似分析解决方案。通过使用四个选定的多维非定常流量问题测试了新技术:二维和三维泰勒腐烂涡流,Kovasznay流程和三维Beltrami流。讨论了这种方法的收敛分析。通过此方法获得的数值结果与以前的作品中可用的其他结果进行比较。我们的研究结果表明,该方法提供了新的近似分析解决方案。此外,我们发现它具有高度精确的解决方案,良好的收敛性,耗时较少,容易为高雷诺数和低马赫数实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号