首页> 外文OA文献 >Fault diagnosis of rotor using EMD thresholding-based de-noising combined with probabilistic neural network
【2h】

Fault diagnosis of rotor using EMD thresholding-based de-noising combined with probabilistic neural network

机译:基于EMD阈值的去噪与概率神经网络相结合的转子故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

De-noising of signal processing is crucial for fault diagnosis in order to successfully conduct feature extraction and is an efficient method for accurate determination of cause. In this paper, the empirical mode decomposition (EMD) thresholding-based de-noising method and probabilistic neural network (PNN) are respectively used in the de-noising of the vibration signal and rotor fault diagnosis and compared with wavelet thresholding-based de-noising technology and back propagation neural network (BPNN). The results show that the clear iterative EMD interval thresholding performs better than wavelet thresholding in the de-noising of the vibration signal, and avoids the determination of wavelet basis and decomposition level. In addition, the PNN created by feature samples does not require training and has a higher accuracy than BPNN.
机译:信号处理的去噪对于故障诊断至关重要,以成功进行特征提取,是一种有效的准确测定原因的方法。在本文中,经验模式分解(EMD)基于阈值的去噪方法和概率神经网络(PNN)分别用于振动信号和转子故障诊断的去噪,并与基于小波阈值的脱模相比通知技术和背部传播神经网络(BPNN)。结果表明,清晰的迭代EMD间隔阈值低于振动信号的去噪中的小波阈值阈值,并且避免了小波基和分解水平的确定。此外,由特征样本创建的PNN不需要培训并且具有比BPNN更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号