首页> 外文OA文献 >On the instability of equilibrium of a mechanical system with nonconservative forces
【2h】

On the instability of equilibrium of a mechanical system with nonconservative forces

机译:作者:张莹莹,王玮,王玮

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper the stability of equilibrium of nonholonomic systems, on which dissipative and nonconservative positional forces act, is considered. We have proved the theorems on the instability of equilibrium under the assumptions that: the kinetic energy, the Rayleigh’s dissipation function and the positional forces are infinitely differentiable functions; the projection of the positional force component which represents the first nontrivial form of Maclaurin’s series of that positional force to the plane, which is normal to the vectors of nonholonomic constraints in the equilibrium position, is central and repulsive (with its centre of action in the equilibrium position). The suggested theorems are generalization of the results from [V.V. Kozlov, Prikl. Math. Mekh. (PMM), T58, V5, (1994), 31-36] and [M.M. Veskovic, Theoretical and Applied Mechanics, 24, (1998), 139-154]. The result obtained is analogous to the result from [D.R. Merkin, Introduction to theory of the stability of motion, Nauka, Moscow (1987)], which refers to the impossibility of equilibrium stabilization in a holonomic conservative system by dissipative and nonconservative positional forces in case when the potential energy in the equilibrium position has the maximum. The proving technique will be similar to that used in the paper [V.V. Kozlov, Prikl. Math. Mekh. (PMM), T58, V5, (1994), 31-36]. .
机译:本文考虑了非网络化系统平衡的稳定性,在这种情况下,耗散和非服务率的位置力作用。我们已经证明了定理在假设下的均衡的稳定性:动能,瑞利的耗散函数和位置力是无限微分的功能;其表示麦克劳林的一系列位置的力的平面,这是正常的,以在平衡位置完整约束的载体中的所述第一非平凡形式的位置力分量的投影,是中央和排斥力(与其在行动的中心均衡位置)。建议的定理是[V.V.的结果的概括Kozlov,Prikl。数学。梅克。 (PMM),T58,V5,(1994),31-36]和[m.m. veskovic,理论和应用力学,24,(1998),139-154]。得到的结果类似于来自[D.R.的结果梅尔金,介绍运动的稳定性的理论,Nauka,莫斯科(1987)],这是指平衡稳定的不可能性在单面完整保守系统通过耗散和非保守的位置的力的情况下,当在平衡位置的势能有最大值。证明技术将类似于论文中使用的技术[V.V. Kozlov,Prikl。数学。梅克。 (PMM),T58,V5,(1994),31-36]。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号