首页> 外文OA文献 >Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014
【2h】

Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014

机译:使用普通最小二乘对登革热和探索其环境和社会经济风险因素的空间分析 - 以中国广州市五区案例研究,2014

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Spatial patterns and environmental and socio-economic risk factors of dengue fever have been studied widely on a coarse scale; however, there are few such quantitative studies on a fine scale. There is a need to investigate these factors on a fine scale for dengue fever. Methods: In this study, a dataset of dengue fever cases and environmental and socio-economic factors was constructed at 1-km spatial resolution, in particular ‘land types’ (LT), obtained from the first high resolution remote sensing satellite launched from China (GF-1 satellite), and ‘land surface temperature’, obtained from moderate resolution imaging spectroradiometer (MODIS) images. Spatial analysis methods, including point density, average nearest neighbor, spatial autocorrelation, and hot spot analysis, were used to analyze spatial patterns of dengue fever. Spearman rank correlation and ordinary least squares (OLS) were used to explore associated environmental and socio-economic risk factors of dengue fever in five districts of Guangzhou City, China in 2014. Results: A total of 30 553 dengue fever cases were reported in the districts of Baiyun, Haizhu, Yuexiu, Liwan, and Tianhe of Guangzhou, China in 2014. Dengue fever cases showed strong seasonal variation. The cases from August to October accounted for 96.3% of the total cases in 2014. The top three districts for dengue fever morbidity were Baiyun (1.32%), Liwan (0.62%), and Haizhu (0.60%). Strong spatial clusters of dengue fever cases were observed. Areas of high density for dengue fever were located at the district junctions. The dengue fever outbreak was significantly correlated with LT, normalized difference water index (NDWI), land surface temperature of daytime (LSTD), land surface temperature of nighttime (LSTN), population density (PD), and gross domestic product (GDP) (correlation coefficients of 0.483, 0.456, 0.612, 0.699, 0.705, and 0.205, respectively). The OLS equation was built with dengue fever cases as the dependent variable and LT, LSTN, and PD as explanatory variables. The residuals were not spatially autocorrelated. The adjusted R-squared was 0.320. Conclusions: The findings of spatio-temporal patterns and risk factors of dengue fever can provide scientific information for public health practitioners to formulate targeted, strategic plans and implement effective public health prevention and control measures. Keywords: Dengue fever, Environmental and socio-economic factors, Spatial pattern analysis, Spatial statistics analysis, Spearman rank correlation, OLS, Guangzhou
机译:目的:空间分布格局和登革热的环境和社会经济风险因素已经在一个粗具规模广泛研究;但是,也有对判罚尺度几个这样的定量研究。有必要研究这些因素对一个判罚尺度为登革热。方法:在这项研究中,登革热病例,环境和社会经济因素的数据集,在1公里的空间分辨率构建,特别是“土地类型”(LT),从第一高分辨率遥感卫星由中国发射获得(GF-1卫星),和“地表温度”,从适度的分辨率成像光谱仪(MODIS)图像而获得。空间分析方法,包括点密度,平均最近邻,空间自相关,以及热点分析,来分析登革热的空间模式。 Spearman等级相关和普通最小二乘法(OLS)来探索相关的环境和社会经济在2014年业绩在广州市,中国的五个区登革热的危险因素:共30 553登革热病例共报告在2014年登革热病例白云,海珠,越秀,荔湾,和中国广州天河的地区表现出较强的季节性变化。 8至10月的情况下,在2014年占病例总数的96.3%,排名前三的地区登革热发病率分别为白云(1.32%),荔湾区(0.62%)和海珠(0.60%)。观察到的登革热病例强烈的空间群集。登革热高密度区域均位于小区路口。登革热爆发与LT,归一化差异水指数(NDWI),白天的地表温度(LSTD),夜间(LSTN),人口密度(PD)的地表温度,和国内生产总值(GDP)(被显著相关的相关系数0.483,0.456,0.612,0.699,0.705,和0.205,分别地)。 OLS的方程与登革热病例为因变量和LT,LSTN和PD作为解释变量建立。残差没有空间自相关。调整后的R平方为0.320。结论:时空格局和登革热的危险因素的研究结果可以提供科学信息,制定有针对性的公共卫生人员,战略规划和实施有效的公共卫生预防和控制措施。关键词:登革热,环境和社会经济因素,空间格局分析,空间统计分析,Spearman等级相关,OLS,广州

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号