首页> 外文OA文献 >Development of supercapacitors with in-situ polymerized polyaniline on MnO2 and Co3O4 anodes and activated carbon cathodes
【2h】

Development of supercapacitors with in-situ polymerized polyaniline on MnO2 and Co3O4 anodes and activated carbon cathodes

机译:在MnO2和Co3O4阳极和活性炭阴极上原位聚合聚苯胺开发超级电容器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Supercapacitors (SCs) store electrochemical energy at an electrode – electrolyte interface with high power density (PD), fast recharge capability and long cycle life. The SCs are two types according to the charge storage mechanisms: electric double layer capacitors (EDLCs) and pseudocapacitors (PCs). Allotropes and polymorphs of carbon are choice to build EDLCs electrodes whereas PCs are built from nanostructured metal oxides, hydroxides, chalcogenides and conducting polymers. Broad objective of this doctoral research is to develop a SC device with PC as anode and EDLC as cathode – this type of devices are called asymmetric supercapacitors (ASCs). Popular PC electrodes such as MnO2 and Co3O4 have poor electrical conductivity – making their composite with conducting polymers such as polyaniline (PANI) is proposed to be a superior PC electrode. In this research, MnO2 and Co3O4 were synthesized by hydrothermal reaction and molten salt methods and their polymeric composite were developed by in situ polymerization. The materials were characterized by thermal analyses, X-ray and electron diffraction, FTIR spectroscopy, gas adsorption studies, scanning and transmission electron microscopy, and cyclic voltammetry. The electrochemical properties of the electrodes were evaluated systematically using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy. The relationship between the pores in the electrodes and the size of the solvated ions in the electrolyte on the final capacitance in various aqueous electrolytes were investigated – the pores smaller than the size of the solvated ions do not contribute to the capacitance of the electrode. Aqueous KOH shown the best diffusion coefficient (6.8 × 10-10 cm2 s-1) and capacitive properties in this study; therefore, it was chosen as the electrolyte of choice. The PANI provided faster ion channeling to the surface of metal oxides and showed improved charge storage capacity than their bare analogues. Highest specific capacitance (CS) obtained in this study was in a PANI composite of Co3O4 synthesized by the molten salt method (CS ~985 F g-1 at 2 mV s-1), recording an increase of ~253% compared to its bare analogue. Three choice of EDLC electrodes were considered in this study, viz. (i) activated carbon from palm kernel shells (PKS) as it form a local abundant natural resource, (ii) commercial activated carbon (AC), and (iii) ordered mesoporous carbon (OMC). The PKS were pyrolyzed and activated using physical and chemical activation methods whereas the other two were obtained from commercial sources. Structural, thermal, morphological, surface, and electrochemical properties of the carbon electrodes were also systematically studied as done for the PC electrodes. The PKS activated carbon showed high areal capacitance (~45 F cm-2), which is one of the highest reported so far in literature, besides showing high cycle stability (95–97%). The ASCs were fabricated using the PC electrodes as anodes and carbons as cathodes. For MnO2 series, PANI-MnO2 (hydrothermal)//OMC recorded the highest energy density (ED) ~27 Wh kg-1 at PD ~400 W kg-1 whereas for Co3O4 series, PANI-Co3O4 (hydrothermal)//OMC gives ED of ~23 Wh kg-1 at similar PD. Despite its nominally smaller ED, the Co3O4 based device showed superior cycling stability than the other.
机译:超级电容器(SC)将电化学能存储在电极–电解质界面上,具有高功率密度(PD),快速充电能力和长循环寿命。根据电荷存储机制,SC分为两种:双电层电容器(EDLC)和伪电容器(PC)。碳的同素异形体和多晶型物是构建EDLC电极的选择,而PC是由纳米结构的金属氧化物,氢氧化物,硫族化物和导电聚合物构建的。这项博士研究的广泛目标是开发一种以PC为阳极,EDLC为阴极的SC器件–这种类型的器件称为非对称超级电容器(ASC)。流行的PC电极(例如MnO2和Co3O4)的导电性很差-使其与导电聚合物(例如聚苯胺(PANI))的复合材料被认为是一种更好的PC电极。本研究通过水热反应和熔融盐法合成了MnO2和Co3O4,并通过原位聚合制备了高分子复合材料。通过热分析,X射线和电子衍射,FTIR光谱,气体吸附研究,扫描和透射电子显微镜以及循环伏安法对材料进行了表征。使用循环伏安法,恒电流充放电循环和电化学阻抗谱系统地评估了电极的电化学性能。研究了在各种水性电解质中最终电容上的电极中的孔与电解质中的溶剂化离子的大小之间的关系–小于溶剂化离子的大小的孔对电极的电容没有影响。在这项研究中,KOH水溶液显示出最佳的扩散系数(6.8×10-10 cm2 s-1)和电容特性;因此,它被选作电解质。 PANI比其裸露的类似物能更快地将离子引导至金属氧化物的表面,并显示出更高的电荷存储能力。在这项研究中获得的最高比电容(CS)是通过熔融盐法合成的Co3O4的PANI复合材料(在2 mV s-1时CS〜985 F g-1),与裸露相比增加了253%。类似物。这项研究考虑了EDLC电极的三种选择,即。 (i)来自棕榈仁壳(PKS)的活性炭,因为它形成了当地丰富的自然资源,(ii)商业活性炭(AC),以及(iii)有序中孔碳(OMC)。使用物理和化学活化方法对PKS进行热解和活化,而其他两种则从商业渠道获得。碳电极的结构,热,形态,表面和电化学性质也已像对PC电极一样进行了系统研究。 PKS活性炭显示出高的面电容(〜45Fcm-2),是迄今为止文献中报道的最高的电容之一,此外还显示出高的循环稳定性(95-97%)。使用PC电极作为阳极,碳作为阴极来制造ASC。对于MnO2系列,PANI-MnO2(水热)// OMC在PD〜400 W kg-1时记录到最高能量密度(ED)〜27 Wh kg-1,而对于Co3O4系列,PANI-Co3O4(水热)// OMC给出在相似的PD下ED约为23 Wh kg-1。尽管其名义上的ED较小,但基于Co3O4的设备仍显示出比其他设备更高的循环稳定性。

著录项

  • 作者

    Izan Izwan Misnon;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号