首页> 外文OA文献 >Model-free controller design based on simultaneous perturbation stochastic approximation
【2h】

Model-free controller design based on simultaneous perturbation stochastic approximation

机译:基于同时摄动随机逼近的无模型控制器设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, with the rapid growth in science and engineering, most of the real world process plants have been built on a large scale and complex systems. As a consequence, modeling of such systems may become very difficult and require a lot of effort. Therefore, it isudnecessary to develop a control method that does not depend on plant models, which is known as the model-free control approach. At the same time, it is also worthy to consider an optimization tool for the model-free approach that is simple to understand for engineers and can optimize a large number of control parameters in a fast manner. So far, there have not been enough literatures to discuss the application of model-free control schemes forudthe above demands. Motivated by the above background, a model-free control scheme is considered in our study. Here, a simultaneous perturbation stochastic approximation (SPSA) algorithm is suggested as a promising tool for the model-free control approach. Then, this dissertation focuses on assessing the effectiveness of the SPSA-based algorithm for various modelfree control problems such as P11) tuning of MIMO systems, optimizing fuel consumption of hybrid electric vehicles, and maximizing power production of wind farms. Firstly, we present a performance comparison of SPSA-based methods for P11) tuning of MllvIO systems. In particular, four typical SPSA-based methods, which are onemeasurementudSPSA (1SPSA), two-measurement SPSA (2SPSA), global SPSA (GSPSA), and adaptive SPSA (ASPSA) are examined. Their performances are evaluated through extensive simulation for several controller design examples, in terms of stability of the closed-loop systems, tracking performance, and computation time. In addition, the performance of the SPSA-based methods is compared to the other stochastic optimization based approaches. Secondly, we propose a model-free controller design for hybrid electric vehicle systems. Here, a switching control scheme is adopted, where each sub-controller is specified for each driving condition, in order to improve the fuel efficiency. An SPSA-based method is utilized to optimize a large number of design parameters in the switching controller. The design method is applied to the JSAE-SICE benchmark problem, which is developed using GT-SUITE of Gamma Technologies, Inc. and integrated with Simulink / MATLAB. The effectiveness of the proposed controller is evaluated in terms of the fuel efficiency improvement and driver's satisfaction, as compared to the sample controller of the benchmark problem. Finally, we provide a model-free approach for maximizing power production of wind farms. Based on the information on the wind farm configuration, such as the turbine location and wind direction, we propose a multi-resolution SPSA (MRSPSA)-based method that can achieve fast model-free controller tuning. In order to evaluate the effectiveness of our proposed scheme, a wind farm model with dynamic characterization of wake interaction between turbines is used and then the proposed method is applied to the Horns Rev wind farm. Furthermore, the performance of the MR-SPSA-based method is also compared with other existing model-free methods, in terms of maximum power production and convergence time.
机译:近年来,随着科学和工程学的快速发展,大多数现实世界中的过程工厂都建立在大规模,复杂的系统上。结果,这种系统的建模可能变得非常困难并且需要大量的努力。因此,有必要开发一种不依赖于工厂模型的控制方法,即无模型控制方法。同时,也有必要考虑一种无模型方法的优化工具,这种工具对于工程师来说很容易理解,并且可以快速地优化大量控制参数。迄今为止,还没有足够的文献来讨论针对上述需求的无模型控制方案的应用。基于上述背景,在我们的研究中考虑了无模型控制方案。在这里,同时扰动随机逼近(SPSA)算法被建议作为一种无模型控制方法的有前途的工具。然后,本文着重于评估基于SPSA的算法对各种无模型控制问题(例如MIMO系统的P11)调谐,优化混合动力汽车的燃料消耗以及最大化风电场发电量)的有效性。首先,我们介绍了针对MllvIO系统进行P11调优的基于SPSA的方法的性能比较。特别是,检查了四种典型的基于SPSA的方法,即一测量 udSPSA(1SPSA),两测量SPSA(2SPSA),全局SPSA(GSPSA)和自适应SPSA(ASPSA)。在闭环系统的稳定性,跟踪性能和计算时间方面,通过对多个控制器设计实例的大量仿真,对它们的性能进行了评估。另外,将基于SPSA的方法的性能与其他基于随机优化的方法进行了比较。其次,我们提出了一种用于混合动力电动汽车系统的无模型控制器设计。这里,采用切换控制方案,其中针对每个行驶条件指定每个子控制器,以提高燃料效率。利用基于SPSA的方法来优化开关控制器中的大量设计参数。该设计方法适用于JSAE-SICE基准测试问题,该问题使用Gamma Technologies,Inc.的GT-SUITE开发并与Simulink / MATLAB集成。与基准问题的样本控制器相比,根据燃油效率的提高和驾驶员的满意度来评估所提出控制器的有效性。最后,我们提供了一种无模型的方法来最大化风电场的发电量。基于风电场配置的信息,例如涡轮机位置和风向,我们提出了一种基于多分辨率SPSA(MRSPSA)的方法,该方法可以实现快速的无模型控制器调整。为了评估我们提出的方案的有效性,使用具有涡轮机之间的尾流相互作用的动态表征的风电场模型,然后将所提出的方法应用于Horns Rev风电场。此外,就最大功率产生和收敛时间而言,还将基于MR-SPSA的方法的性能与其他现有的无模型方法进行了比较。

著录项

  • 作者

    Mohd Ashraf Ahmad;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号