首页> 外文OA文献 >A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects
【2h】

A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects

机译:跟踪交互对象的可见性推理的因果关系和图形模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tracking humans that are interacting with the other subjects or environmentremains unsolved in visual tracking, because the visibility of the human ofinterests in videos is unknown and might vary over times. In particular, it isstill difficult for state-of-the-art human trackers to recover complete humantrajectories in crowded scenes with frequent human interactions. In this work,we consider the visibility status of a subject as a fluent variable, whosechanges are mostly attributed to the subject's interactions with thesurrounding, e.g., crossing behind another objects, entering a building, orgetting into a vehicle, etc. We introduce a Causal And-Or Graph (C-AOG) torepresent the causal-effect relations between an object's visibility fluentsand its activities, and develop a probabilistic graph model to jointly reasonthe visibility fluent change (e.g., from visible to invisible) and track humansin videos. We formulate the above joint task as an iterative search of feasiblecausal graph structure that enables fast search algorithm, e.g., dynamicprogramming method. We apply the proposed method on challenging video sequencesto evaluate its capabilities of estimating visibility fluent changes ofsubjects and tracking subjects of interests over time. Results with comparisonsdemonstrated that our method clearly outperforms the alternative trackers andcan recover complete trajectories of humans in complicated scenarios withfrequent human interactions.
机译:跟踪与其他主题或环境管理在视觉跟踪中进行交互的人类,因为视频中的人类的可见性是未知的,可能会随着时间而异。特别是,最先进的人类跟踪器难以恢复拥挤的场景中的完整的搬运工,频繁的人类互动。在这项工作中,我们考虑一个受试者作为流利变量的可见性状态,Whosechanges主要归因于对象与对象的互动,例如,在另一个物体后面横穿,进入建筑物,更换进入车辆等。我们介绍了一个因果和或图形(C-AOG)Torepresent对象的可见性流利事件之间的因果关系关系,并开发一个概率图模型,共同理解了能见度流畅的变化(例如,从看不见的)和跟踪人类视频。我们将上述联合任务制定为迭代搜索FeasiBleCausal图形结构,这使得快速搜索算法,例如动态预编程方法。我们应用提出的挑战视频函数的方法评估其估算HSUBLES的可见度流畅变化的能力和随着时间的推移对兴趣的跟踪主题。结果进行了比较,我们的方法显然优于替代跟踪器和康复在复杂的情景中恢复了人类互动的复杂情景的完整轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号