首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Discriminatively Trained And-Or Graph Models for Object Shape Detection
【24h】

Discriminatively Trained And-Or Graph Models for Object Shape Detection

机译:用于对象形状检测的差异训练和/或图形模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node, activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other state-of-the-art approaches. We also release a new shape database with annotations, which includes more than challenging shape instances, for recognition and detection.
机译:在本文中,我们研究了一种新颖的基于零件的可重配置模型,即And-Or图模型,以识别图像中的对象形状。我们提出的模型由四层组成:底部的叶节点是用于检测轮廓片段的局部分类器;叶节点上方的or节点用作激活其子叶节点的开关,从而在推理期间可重新配置模型;较高层中的节点捕获整体形状变形;顶部的一个根节点(也是一个节点)激活其子节点和节点之一以处理较大的全局变化(例如,不同的姿势和视图)。我们提出了一种新颖的结构优化算法,以区分性地训练弱注释数据中的And-Or模型。该算法迭代地确定模型结构(例如,节点及其布局)以及参数学习。在几个具有挑战性的数据集上,我们的模型证明了针对背景杂波执行鲁棒的基于形状的对象检测的有效性,并且优于其他最新方法。我们还发布了一个带有注释的新形状数据库,其中包括具有挑战性的形状实例,以供识别和检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号