首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects
【24h】

A Causal And-Or Graph Model for Visibility Fluent Reasoning in Tracking Interacting Objects

机译:交互对象跟踪中可视性推理的因果图模型

获取原文

摘要

Tracking humans that are interacting with the other subjects or environment remains unsolved in visual tracking, because the visibility of the human of interests in videos is unknown and might vary over time. In particular, it is still difficult for state-of-the-art human trackers to recover complete human trajectories in crowded scenes with frequent human interactions. In this work, we consider the visibility status of a subject as a fluent variable, whose change is mostly attributed to the subject's interaction with the surrounding, e.g., crossing behind another object, entering a building, or getting into a vehicle, etc. We introduce a Causal And-Or Graph (C-AOG) to represent the causal-effect relations between an object's visibility fluent and its activities, and develop a probabilistic graph model to jointly reason the visibility fluent change (e.g., from visible to invisible) and track humans in videos. We formulate this joint task as an iterative search of a feasible causal graph structure that enables fast search algorithm, e.g., dynamic programming method. We apply the proposed method on challenging video sequences to evaluate its capabilities of estimating visibility fluent changes of subjects and tracking subjects of interests over time. Results with comparisons demonstrate that our method outperforms the alternative trackers and can recover complete trajectories of humans in complicated scenarios with frequent human interactions.
机译:跟踪与其他主题或环境交互的人员在视觉跟踪中仍然无法解决,因为感兴趣的人员在视频中的可见度未知,并且可能随时间而变化。特别是,对于最先进的人类跟踪器来说,在人与人之间频繁互动的拥挤场景中,要恢复其完整的人类轨迹仍然很困难。在这项工作中,我们将对象的可见性状态视为一个流畅的变量,其变化主要归因于对象与周围环境的交互作用,例如,越过另一个物体,进入建筑物或进入车辆等。引入因果关系图(C-AOG)来表示对象的可见性流利度与其活动之间的因果关系,并开发概率图模型以共同推理可见性流利度变化(例如,从可见到不可见),并跟踪视频中的人物。我们将此联合任务表述为可行因果图结构的迭代搜索,该因果图结构可实现快速搜索算法(例如动态编程方法)。我们将提出的方法应用于具有挑战性的视频序列,以评估其评估主题的可见度流畅变化和随时间推移跟踪兴趣主题的能力。对比结果表明,我们的方法优于其他跟踪器,可以在人与人之间频繁互动的复杂场景中恢复人的完整轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号