首页> 外文OA文献 >Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands
【2h】

Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands

机译:棉花叶面积指数检索机器学习回归算法的比较使用Sentinel-2光谱带

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in a variety of fields. Five state-of-the-art machine learning regression algorithms (MLRAs), namely, artificial neural network (ANN), support vector regression (SVR), Gaussian process regression (GPR), random forest (RF) and gradient boosting regression tree (GBRT), have been used in the retrieval of cotton LAI with Sentinel-2 spectral bands. The performances of the five machine learning models are compared for better applications of MLRAs in remote sensing, since challenging problems remain in the selection of MLRAs for crop LAI retrieval, as well as the decision as to the optimal number for the training sample size and spectral bands to different MLRAs. A comprehensive evaluation was employed with respect to model accuracy, computational efficiency, sensitivity to training sample size and sensitivity to spectral bands. We conducted the comparison of five MLRAs in an agricultural area of Northwest China over three cotton seasons with the corresponding field campaigns for modeling and validation. Results show that the GBRT model outperforms the other models with respect to model accuracy in average ( R 2 ¯ = 0.854, R M S E ¯ = 0.674 and M A E ¯ = 0.456). SVR achieves the best performance in computational efficiency, which means it is fast to train, and to validate that it has great potentials to deliver near-real-time operational products for crop management. As for sensitivity to training sample size, GBRT behaves as the most robust model, and provides the best model accuracy on the average among the variations of training sample size, compared with other models ( R 2 ¯ = 0.884, R M S E ¯ = 0.615 and M A E ¯ = 0.452). Spectral bands sensitivity analysis with dCor (distance correlation), combined with the backward elimination approach, indicates that SVR, GPR and RF provide relatively robust performance to the spectral bands, while ANN outperforms the other models in terms of model accuracy on the average among the reduction of spectral bands ( R 2 ¯ = 0.881, R M S E ¯ = 0.625 and M A E ¯ = 0.480). A comprehensive evaluation indicates that GBRT is an appealing alternative for cotton LAI retrieval, except for its computational efficiency. Despite the different performance of the ML models, all models exhibited considerable potential for cotton LAI retrieval, which could offer accurate crop parameters information timely and accurately for crop fields management and agricultural production decisions.
机译:叶面积指数(LAI)是一项至关重要的作物生物物理参数,已广泛用于各种领域。五个最先进的机器学习回归算法(MLRAS),即人工神经网络(ANN),支持向量回归(SVR),高斯进程回归(GPR),随机林(RF)和渐变升压回归树( GBRT)已被用于检索棉线与Sentinel-2光谱带。比较了五种机器学习模型的性能,以便更好地应用MLRAS在遥感中,因为挑战性问题仍然存在于为作物LAI检索的MLRAS选择,以及训练样本大小和光谱的最佳数字的决定乐队到不同的mlras。在模型精度,计算效率,对训练样本大小和敏感性敏感度的敏感性方面采用了综合评估。我们在西北地区的五个MLRAS比较了三个棉花季节,具有相应的田间运动,用于建模和验证。结果表明,GBRT模型相对于模型精度平均优于其他模型(R 2 = 0.854,R M SE¯= 0.674和M A E = 0.456)。 SVR在计算效率方面实现了最佳性能,这意味着它迅速训练,并且验证它具有提供近实时运营产品的巨大潜力,用于作物管理。对于对训练样本大小的敏感性,GBRT表现为最强大的模型,并在与其他模型相比(R 2 = 0.884,RMSE = 0.615和MAE)相比,提供了训练样本大小的变化的平均水平准确度¯= 0.452)。使用DCOR(距离相关)的光谱频段灵敏度分析与后向消除方法相结合,指示SVR,GPR和RF为光谱带提供相对稳健的性能,而ANN以模型精度在平均值方面优于其他模型。减少光谱带(R 2 = 0.881,RMSE = 0.625和MAE = 0.480)。综合评价表明,除了计算效率之外,GBRT是一种吸引人的棉花检索替代品。尽管ML模型的性能不同,但所有型号均表现出相当大的棉花检索潜力,这可能会对作物领域管理和农业生产决策及时,准确地提供准确的作物参数信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号