首页> 外文OA文献 >DOA Estimation for a Mixture of Uncorrelated and Coherent Sources Based on Hierarchical Sparse Bayesian Inference with a Gauss-Exp-Chi2 Prior
【2h】

DOA Estimation for a Mixture of Uncorrelated and Coherent Sources Based on Hierarchical Sparse Bayesian Inference with a Gauss-Exp-Chi2 Prior

机译:基于等级稀疏贝叶斯推论的不相关和相干源的混合的DOA估计,并在GASS-EXP-CHI2之前

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Direction of arrival (DOA) estimation algorithms based on sparse Bayesian inference (SBI) can effectively estimate coherent sources without recurring to extra decorrelation techniques, and their estimation performance is highly dependent on the selection of sparse prior. Specifically, the specified sparse prior is expected to concentrate its mass on the zero and distribute with heavy tails; otherwise, these algorithms may suffer from performance degradation. In this paper, we introduce a new sparse-encouraging prior, referred to as “Gauss-Exp-Chi2” prior, and develop an efficient DOA estimation algorithm for a mixture of uncorrelated and coherent sources under a hierarchical SBI framework. The Gauss-Exp-Chi2 prior distribution exhibits a sharp peak at the origin and heavy tails, and this property makes it an appropriate prior to encourage sparse solutions. A three-layer hierarchical sparse Bayesian model is established. Then, by exploiting variational Bayesian approximation, the model parameters are estimated by alternately updating until Kullback-Leibler (KL) divergence between the true posterior and the variational approximation becomes zero. By constructing the source power spectra with the estimated model parameters, the number and locations of the highest peaks are extracted to obtain source number and DOA estimates. In addition, some implementation details for algorithm optimization are discussed and the Cramér-Rao bound (CRB) of DOA estimation is derived. Simulation results demonstrate the effectiveness and favorable performance of the proposed algorithm as compared with the state-of-the-art sparse Bayesian algorithms.
机译:基于稀疏贝叶斯推理(SBI)的到达方向(DOA)估计算法(SBI)可以有效地估计相干源而不经常出现额外的去相关技术,并且它们的估计性能高度依赖于稀疏先前的选择。具体地,预计指定的稀疏先前将集中在零中的质量并分配重尾部;否则,这些算法可能遭受性能下降。在本文中,我们引入一个新的稀疏鼓励之前,称为“高斯的Exp-χ2”之前,并制定的下分层SBI框架不相关的和相干源的混合物的高效DOA估计算法。高斯-Ex-Chi2先前分布在原产地和重型尾部呈现尖锐的峰值,并且该属性在鼓励稀疏解决方案之前使其适当。建立了三层分层稀疏贝叶斯模型。然后,通过利用变分贝叶斯近似,通过交替更新直到真正的后后和变分近似之间的kullback-leibler(kl)发散来估计模型参数。通过用估计的模型参数构造源功率谱,提取最高峰的数量和位置以获得源码和DOA估计。此外,讨论了算法优化的一些实现细节,导出了DOA估计的Cramér-Rao绑定(CRB)。仿真结果表明,与最先进的稀疏贝叶斯算法相比,所提出的算法的有效性和有利性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号