首页> 外文OA文献 >Locally controlled photonic crystal devices with coupled quantum dots: physics and applications
【2h】

Locally controlled photonic crystal devices with coupled quantum dots: physics and applications

机译:具有耦合量子点的局部控制光子晶体器件:物理和应用

摘要

One of the most promising ways of building future nano-photonic networks for classical and quantum information processing is by using photonic crystals. Quantum dots coupled to optical modes allow for efficient control of light in these devices. In this dissertation I present the work I have done at Stanford University toward building integrated photonic crystal devices with coupled quantum dots. The most significant experiments that we performed on this platform relied on perfecting the fabrication techniques for photonic crystals, and developing technologies for local control of the cavity and quantum dot properties. In terms of fabrication, our lab is currently able to make state of the art GaAs photonic crystal cavities operating at the wavelength around 930nm with quality factors up to 25000. Combined with quantum dots, these cavities allowed us to achieve the strong coupling regime, which opened the possibility to perform fundamental experiments on cavity quantum electrodynamics. Regarding the local control of cavities and quantum dots, we have developed several techniques. Two of them relied on controlling the local temperature either via laser heating or micron-scale ohmic heaters. Another technique was based on in situ change of the index of refraction using chalcogenide glasses. Finally, we have also developed a method to control the quantum dot properties via a local electric field applied using metallic electrodes. The local temperature tuning played an essential role in the first experiments on coherent probing of strongly coupled cavity - quantum dot systems. The coherent probing technique enabled a series of fundamental experiments where the quantum dot in the cavity was used as a non-linear medium with an ultra-small mode volume. In one experiment, the phase of photons interacting with the system could be controlled via optical fields at power levels as low as one photon per characteristic lifetime of the system. Another experiment investigated quantum nonlinearities of the cavity - quantum dot system by demonstrating photon blockade and photon-induced tunneling. The great promise of using photonic crystals is that they can be combined in an integrated on-chip optical network. To this end, we have developed integrated devices that assemble resonators, waveguide, input/output couplers, and elements for local tuning. Single quantum dots were coupled to the resonators so they could act as on-chip light switches operating at the fundamental limit of light-matter interaction. For opto-electronic applications, the manipulation of light on a chip should be done either all optically or electrically. For electrical control we have developed techniques where the resonance of the quantum dot in the cavity is controlled by applying a lateral electric field using a metallic electrode. This switch has the promise to operate at energies per switching operation below 1 fJ, orders of magnitude lower than current state of the art devices. The goal is to extend this technique for waveguide-coupled cavities such that electro-optic switching can be implemented for on-chip optical signal processing.
机译:建立未来的用于经典和量子信息处理的纳米光子网络的最有前途的方法之一是使用光子晶体。耦合到光学模式的量子点可有效控制这些设备中的光。在这篇论文中,我介绍了我在斯坦福大学所做的工作,以构建具有耦合量子点的集成光子晶体器件。我们在该平台上执行的最重要的实验依赖于完善光子晶体的制造技术,以及开发用于腔体和量子点特性的局部控制的技术。在制造方面,我们的实验室目前能够制造最先进的GaAs光子晶体腔,该腔在930nm左右的波长下工作,质量因子高达25000。结合量子点,这些腔使我们能够实现强耦合状态,从而开启了进行腔量子电动力学基础实验的可能性。关于腔和量子点的局部控制,我们已经开发了几种技术。其中两个依靠通过激光加热或微米级欧姆加热器来控制局部温度。另一种技术是基于使用硫族化物玻璃的折射率的原位变化。最后,我们还开发了一种通过使用金属电极施加的局部电场来控制量子点特性的方法。在有关强耦合腔-量子点系统的相干探测的第一个实验中,局部温度调节起着至关重要的作用。相干探测技术实现了一系列基础实验,其中腔中的量子点被用作具有超小模式体积的非线性介质。在一个实验中,可以通过光场来控制与系统相互作用的光子的相位,该功率级的功率水平低至每个系统特征寿命一个光子。另一个实验通过演示光子阻挡和光子诱导的隧穿研究了腔-量子点系统的量子非线性。使用光子晶体的巨大希望是可以将它们组合在集成的片上光网络中。为此,我们已经开发出集成了谐振器,波导,输入/输出耦合器和用于本地调谐的元件的集成设备。单量子点耦合到谐振器,因此它们可以充当在光物质相互作用的基本极限下运行的片上光开关。对于光电应用,芯片上的光操作应全部光学或电气完成。对于电控制,我们开发了一些技术,其中通过使用金属电极施加横向电场来控制空腔中量子点的共振。该开关有望以低于1 fJ的开关操作能量运行,比现有技术的当前状态低几个数量级。目的是将这种技术扩展到与波导耦合的腔,以便可以为片上光信号处理实现电光切换。

著录项

  • 作者

    Faraon Andrei;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号