首页> 外文OA文献 >Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods
【2h】

Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods

机译:使用机器学习方法自动检测不成比例地扩大的蛛网膜下腔空间脑积水

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Create an automated classifier for imaging characteristics of disproportionately enlarged subarachnoid space hydrocephalus (DESH), a neuroimaging phenotype of idiopathic normal pressure hydrocephalus (iNPH). Methods: 1597 patients from the Mayo Clinic Study of Aging (MCSA) were reviewed for imaging characteristics of DESH. One core feature of DESH, the presence of tightened sulci in the high-convexities (THC), was used as a surrogate for the presence of DESH as the expert clinician-defined criterion on which the classifier was trained. Anatomical MRI scans were automatically segmented for cerebrospinal fluid (CSF) and overlaid with an atlas of 123 named sulcal regions. The volume of CSF in each sulcal region was summed and normalized to total intracranial volume. Area under the receiver operating characteristic curve (AUROC) values were computed for each region individually, and these values determined feature selection for the machine learning model. Due to class imbalance in the data (72 selected scans out of 1597 total scans) adaptive synthetic sampling (a technique which generates synthetic examples based on the original data points) was used to balance the data. A support vector machine model was then trained on the regions selected. Results: Using the automated classification model, we were able to classify scans for tightened sulci in the high convexities, as defined by the expert clinician, with an AUROC of about 0.99 (false negative ≈ 2%, false positive ≈ 5%). Ventricular volumes were among the classifier's most discriminative features but are not specific for DESH. The inclusion of regions outside the ventricles allowed specificity from atrophic neurodegenerative diseases that are also accompanied by ventricular enlargement. Conclusion: Automated detection of tight high convexity, a key imaging feature of DESH, is possible by using support vector machine models with selected sulcal CSF volumes as features. Keywords: Normal pressure ydrocephalus, Disproportionately enlarged subarachnoid hydrocephalus, Support vector machines, Computer-aided diagnosis, Tight high-convexity
机译:目的:用于成像不成比例放大蛛网膜下腔脑积水(DESH),特发性正常压力脑积水(INPH)的神经影像学表型的特征创建一个自动分类器。方法:老龄化的梅奥诊所的研究(MCSA)1597例患者DESH的成像特性进行了审查。 DESH,收紧沟在高凸面(THC)的存在中的一个核心特征,用作DESH的存在,作为在其上分类器进行训练的专家的临床医生定义标准的替代。解剖MRI扫描,自动分割为脑脊髓液(CSF),并用123个命名脑沟区域的图谱覆盖。 CSF在每个脑沟区域的体积相加并归一化至总颅内容积。接收机下面积操作特性曲线(AUROC)值计算每个区域单独地,这些值确定的特征选择用于机器学习模型。由于在数据类的不平衡(72个选择的扫描出1597次总扫描的)自适应合成采样(其产生基于原始数据点合成实施例中的技术)来平衡数据。然后,支持向量机模型进行训练上选择的区域。结果:使用自动分类模型,我们能够在高凸面分类为收紧沟扫描,由专家临床医生所定义,具有大约0.99的AUROC(假阴性≈2%,假阳性≈5%)。心室体积为分类的判别能力最强的特征之中,但不具体的DESH。区域的允许特异性从萎缩性神经变性疾病心室其也伴随心室扩大外的夹杂物。结论:自动紧凸高的检测,DESH的一个关键特征成像,通过使用支持向量机模型与选定的脑沟CSF体积作为特征是可能的。关键词:常压ydrocephalus,扩大不成比例蛛网膜下腔脑积水,支持向量机,计算机辅助诊断,严密的高凸

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号