首页> 外文OA文献 >Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach
【2h】

Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach

机译:基于神经网络方法的非粘性土桩轴向容量预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an application of two advanced approaches, Artificial Neural Networks (ANN) and Princi­pal Component Analysis (PCA) in predicting the axial pile capacity. The combination of these two approaches allowed the development of an ANN model that provides more accurate axial capacity predictions. The model makes use of Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian Regularization (BR), and it is established through the incorporation of approximately 415 data sets obtained from data published in the literature for a wide range of un-cemented soils and pile configurations. The compiled database includes, respectively 247 and 168 loading tests on large-and low-displacement driven piles. The contributions of the soil above and below pile toe to the pile base resistance are pre-evaluated using separate finite element (FE) analyses. The assessment of the predictive performance of the new method against a number of traditional SPT-based approaches indicates that the developed model has attractive capabili­ties and advantages that render it a promising tool. To facilitate its use, the developed model is translated into simple design equations based on statistical approaches.
机译:本文介绍了两种先进方法,人工神经网络(ANN)和主成分分析(PCA)的应用,预测轴向桩容量。这两种方法的组合允许开发ANN模型,提供更准确的轴向容量预测。该模型利用贝叶斯正则化(BR)的反向传播多层Perceptron(BPMLP),并通过加入从文献中发布的数据的大约415个数据集来建立,以获得各种未粘合的土壤和桩配置。编译的数据库分别包括在大型和低位移驱动桩上的247和168加载测试。使用单独的有限元(Fe)分析预先评估土壤以上和下方的土壤和下方的贡献。评估新方法对许多传统的基于SPT方法的预测性能表明,开发的模型具有吸引力和优势,使其成为有前途的工具。为了便于其使用,开发的模型基于统计方法转换为简单的设计方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号