首页> 中文期刊> 《计算机应用》 >基于循环神经网络的电信行业容量数据预测方法

基于循环神经网络的电信行业容量数据预测方法

     

摘要

在电信运维的容量预测过程中,存在容量指标和部署业务种类繁多的问题.现有研究未考虑指标数据类型的差异,对所有类型的数据使用同种预测方法,使得预测效果参差不齐.为了提升指标预测效率,提出一种指标数据类型分类方法,利用该方法将数据类型分为趋势型、周期型和不规则型.针对其中的周期型数据预测,提出基于双向循环神经网络(BiRNN)的周期型容量指标预测模型,记作BiRNN-BiLSTM-BI.首先,为分析容量数据的周期特征,提出一种忙闲分布分析算法;其次,搭建循环神经网络(RNN)模型,该模型包含一层BiRNN和一层双向长短时记忆网络(BiLSTM);最后,充分利用系统忙闲分布信息,对BiRNN输出的结果进行优化.与传统的三次指数平滑、差分自回归移动平均(ARIMA)模型和反向传播(BP)神经网络模型进行比较的实验结果表明,在统一日志数据集和分布式缓存数据集上,提出的BiRNN-BiLSTM-BI模型的均方误差(MSE)分别比对比模型中表现最优的模型降低了15.16%和45.67%,可见预测准确率得到了很大程度的提升.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号