首页> 外文OA文献 >Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments
【2h】

Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

机译:甲烷氧化微生物海相沉积物中微生物群落对痕量金属利用的地球化学,宏基因组学和元蛋白质组学研究

摘要

Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphide-rich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold (≤ 10°C) and sulphidic (> 1 mM ΣH_(2)S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5–270 nM), cobalt (0.5–6 nM), molybdenum (10–5600 nM) and tungsten (0.3–8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B_(12) biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.
机译:微生物对金属酶中的痕量金属有严格的要求,这些酶催化重要的生物地球化学反应。在富含缺氧甲烷和硫化物的环境中,微生物可能会因金属硫化物沉淀导致生物利用度降低而对金属的获取和利用产生独特的适应性。但是,在低温(≤10°C)和硫化物(> 1 mMΣH_(2)S)深海甲烷渗漏生态系统中,微量营养元素循环基本上未被开发。我们调查了俄勒冈州近海和美国加利福尼亚州甲烷渗漏中的痕量金属地球化学和微生物金属利用情况,并报告了镍(0.5–270 nM),钴(0.5–6 nM),钼(10–5600 nM)和钨(水合物岭沉积物孔隙水中的浓度为0.3–8 nM)。尽管钴和钨的含量低,宏基因组学和元蛋白质组学数据表明,微生物联合体催化甲烷的厌氧氧化(AOM)除镍和钼外,还利用了稀缺的微量营养素。厌氧的甲烷营养古细菌(ANME)和硫酸盐还原细菌中都存在用于含钴的维生素B_(12)生物合成的遗传机制。在两个渗水生态系统中的ANME中表达了与甲酰甲基呋喃呋喃脱氢酶的含钨形式相关的蛋白质,这是在嗜冷微生物中表达钨丝酶的第一个证据。总体而言,我们的数据表明AOM财团使用专门的生化策略来克服在硫化环境中金属可用性的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号