A systematic study of energetic ion trajectories in Jupiter's plasma sheet region predicts a significant role for both regular and stochastic types of motion and reveals several aspects of the ion dynamics that aid in the interpretation of Galileo observations. The motion is generally confined to the vicinity of the current sheet in a way that is proportional to the variable current sheet thickness as seen in the particle and field data. The radial extent of the trajectories increases with rigidity and initial radial distance from the planet, explaining the corresponding lack of high-rigidity ions and decreasing radial gradients at lower rigidity. Ion intensity increases associated with changes in current sheet thickness suggest an acceleration region at ∼25 to 30 R_J. Energy dispersion in ion events at larger radial distances can be explained by such a source combined with elastic ion scattering.
展开▼
机译:用等离子体约束实现重力场的动态控制热核聚变(TLTS)方法,通过热辐射等离子体绝缘的壁反应堆防止中子辐射并节省磁场和等离子体的混合,使用旋转磁场的异步磁惯性约束反应堆(AMITYAR和HFM)为实施该方法,在该反应器中点燃热核反应的方法,爆炸式等离子发生器(VIP)的实施方法,以及具有HFM的特立普安瓿,以实现D + T反应和具有超高温热度的HFM D +3НЕ和1Н+11В的高温反应