首页> 外文学位 >Probing the structure, composition, and dynamics of the Jovian plasma sheet with energetic particles.
【24h】

Probing the structure, composition, and dynamics of the Jovian plasma sheet with energetic particles.

机译:用高能粒子探测木星等离子体板的结构,组成和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Jupiter possesses the largest magnetosphere in the solar system through its unique combination of rapid planetary rotation, internal plasma source, and immense intrinsic planetary magnetic field. The nature of its interaction with the solar wind has long been an outstanding question in solar system physics, addressed recently by the unprecedented in situ observations of Jupiter's near-equatorial magnetosphere obtained by the orbiting Galileo spacecraft. The Energetic Particles Detector (EPD) aboard Galileo is particularly well suited to characterize the energy spectra and streaming velocity of the non-thermal Jovian plasma and thereby assess the competing influences of planetary rotation and solar wind momentum transfer on the steady state behavior and temporal variability of the magnetosphere.; This thesis presents a comprehensive characterization of the energetic particle environment in and around the Jovian plasma sheet using measurements of the three-dimensional distribution of protons, oxygen, and sulfur ions with energies between ∼0.01−1 MeV/nucl obtained by the Galileo EPD during its eight year mission from 1995 to 2003. Energetic particle intensities, energy spectral indices, species abundance ratios, and streaming velocities are derived from the EPD measurements and analyzed ratios, and streaming velocities are derived from the EPD measurements and analyzed to characterize their dependence on the orientation of the magnetic field, local time asymmetries arising from the solar wind interaction, and temporal deviations from steady-state structure and dynamics.; The Jovian plasma sheet is detected throughout the duration of the Galileo observations. Significant local time asymmetries are observed in both its local structure and motion as well as its global configuration and dynamics at radial distances as small as 15 RJ. The plasma sheet in the dusk sector is thicker and more disordered relative to that near dawn, where persistent southward non-thermal streaming also is observed. The average streaming velocity itself begins to substantially deviate from rigid corotation with the planet around 25 RJ, consistent with plasma mass loading by the moon Io having a major influence over the plasma convection pattern.
机译:木星通过其快速行星自转,内部等离子源和巨大的固有行星磁场的独特结合,拥有太阳系中最大的磁层。长期以来,其与太阳风相互作用的性质一直是太阳系物理学中的一个悬而未决的问题,最近,伽利略号航天器在轨道上对木星近赤道磁层进行了空前的实地观测,从而解决了这一问题。伽利略号上的高能粒子检测器(EPD)特别适合表征非热Jovian等离子体的能谱和流速度,从而评估行星旋转和太阳风动量传递对稳态行为和时间变异性的竞争影响。磁层。本文通过测量伽利略EPD在大约0.01-1 MeV /核之间的能量在质子,氧和硫离子的三维分布上的测量来全面描述Jovian等离子体片内和周围的高能粒子环境。它的1995年至2003年为期8年的任务。高能粒子强度,能谱指数,物种丰度比和流动速度是从EPD测量和分析的比率中得出的,流动速度是从EPD测量中得出的,并进行分析以表征它们对速度的依赖性磁场的方向,太阳风相互作用引起的局部时间不对称以及稳态结构和动力学的时间偏差。在伽利略观测的整个过程中都检测到木星的血浆片。在其局部结构和运动以及在径向距离小至15 R J 的整体构造和动力学方面都观察到了明显的局部时间不对称性。相对于接近黎明的黄昏区域,黄昏区域的等离子层更厚且更无序,在该处还观察到持续的向南非热流。平均流速度本身开始明显偏离与行星在25 R 附近的刚性同向旋转,这与月亮Io对等离子对流模式产生重大影响的等离子载荷相一致。

著录项

  • 作者

    Waldrop, Lara Suzon.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Astronomy and Astrophysics.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号